1: \(d(a, z)\), shortest path} shortestPath(weighted, connected, simple graph \(G\),
vertex \(a\), vertex \(z\))

2: # Initialization

3: \(B = \{a\}\)

4: \(n = 0\) # initial iteration

5: \(r = a\) # the most recent vertex added to \(B\)

6: \(d(a, a) = 0\) # the distance from \(a\) to \(a\) is known

7: for each vertex \(v\) in \(G - \{a\}\)

8: \(d_0(v) = \infty\)

9: # Start the main loop

10: while \(z \not\in B\)

11: \(n = n + 1\)

12: \(A\) becomes the set of vertices in \(V - B\) which are adjacent to \(r\)

13: for each vertex, \(u\) in \(A\) # a shorter estimate may be possible

14: \(d_n(u) = \min\{d_{n-1}(u), d(a, r) + w(r, u)\}\)

15: if \(d_n(u) \neq d_{n-1}(u)\)

16: \(p(u) = r\) # \(u\) is currently best reached by passing through \(r\)

17: for each vertex, \(v \in (V - A)\) # no change in the estimate

18: \(d_n(v) = d_{n-1}(v)\)

19: \(x = a\) vertex in \(V - B\) with minimum value for \(d_n(u)\) among vertices \(u \in V - B\)

20: \(d(a, x) = d_n(x)\) # the true distance from \(a\) to \(x\) is now known

21: add \(x\) to \(B\)

22: \(r = x\) # \(x\) becomes the most recently added vertex

23: # \(z\) has been reached, now construct the path

24: \(P = \) an ordered list with \(z\) as its only element # start building the path

25: \(r = z\) # the most recently added vertex

26: while \(r \neq a\)

27: \(x = p(r)\) # \(r\) can be reached by passing through \(x\)

28: prepend \(x\) to \(P\) # add next vertex to the front of \(P\)

29: \(r = x\)

30: return \([d(a, z), P]\)

31: end shortestPath

\(n\)	\(B\)	\(r\)	\(A\)	\(a\)	\(q\)	\(y\)	\(s\)	\(t\)	\(m\)	\(u\)	\(z\)	\(a\)	\(q\)	\(y\)	\(s\)	\(t\)	\(m\)	\(u\)	\(z\)
0	\(\{a\}\)	\(a\)	\(\{u, y\}\)	\(0\)	\(\infty\)	\(a\)	\(a\)												
1	\(\{a, y\}\)	\(y\)	\(\{q, u, t\}\)	\(9\)	\(3\)	\(4\)	\(y\)	\(y\)											
2	\(\{a, u, y\}\)	\(u\)	\(\{t\}\)	\(6\)															
3	\(\{a, t, u, y\}\)	\(t\)	\(\{q, m\}\)	\(7\)	\(11\)	\(t\)	\(t\)												
4	\(\{a, q, t, u, y\}\)	\(q\)	\(\{s\}\)	\(12\)	\(11\)	\(q\)													
5	\(\{a, m, q, t, u, y\}\)	\(m\)	\(\{s, z\}\)	\(12\)	\(18\)	\(m\)													
6	\(\{a, m, q, t, u, y\}\)	\(s\)	\(\{z\}\)	\(16\)	\(s\)														