Math131A Midterm Solutions

Q1. Does the series $\sum \frac{(-1)^{n} n}{\sqrt{n!}}$ converge or diverge? Does it converge absolutely? Prove your claims. [Recall that $n!=n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$.]

Solution. Let $s_{n}=\frac{n}{\sqrt{n!}}$. Note that for sufficiently large $n, n!>n(n-1)(n-2)(n-3)(n-4)(n-5)>(n-5)^{6}$, so $\frac{n}{\sqrt{n!}}<\frac{n}{(n-5)^{3}}$. By comparison test, the series $\sum s_{n}$ converges, so $\sum(-1)^{n} s_{n}$ converges absolutely, and hence converges.

Q2. Prove that the inequality

$$
||x|-|y|| \leq|x-y|
$$

holds for all real numbers $x, y \in \mathbb{R}$.
Solution. We need to show that $-|x-y| \leq|x|-|y| \leq|x-y|$. By the Triangle Inequality, we have $|x|=$ $|x-y+y| \leq|x-y|+|y|$, yielding the second inequality $|x|-|y| \leq|x-y|$. By symmetry, exchanging the role of x and y, we get $|y|-|x| \leq|x-y|$, which gives the first inequality.

Q3. Suppose $\left(s_{n}\right)$ is a convergent sequence such that $\lim s_{n}<23$. Prove that eventually $s_{n}<23$; i.e., there exists a number N such that $n>N$ implies $s_{n}<23$.

Solution. Let $s=\lim s_{n}$. Let $\varepsilon=23-s$. As $s<23, \varepsilon>0$. Therefore by definition, there exists N such that $n>N$ implies $\left|s_{n}-s\right|<\varepsilon$. But then $s_{n}<s+\varepsilon=23$, as desired.

Q4. Suppose $A, B \subset \mathbb{R}$ are bounded nonempty subsets. Let $C=\{a-b: a \in A, b \in B\}$ be the set containing the difference $a-b$ for each $a \in A$ and $b \in B$. Calculate $\inf C$ in terms of $\inf A, \inf B, \sup A$, and $\sup B$. Prove your claim.

Solution. Let $\alpha=\inf A$ and $\beta=\sup B$. We prove that $\inf C=\alpha-\beta$.
Recall that inf C is the greatest lower bound of elements in C. As α is a lower bound of A, we have $\alpha \leq a$ for all $a \in A$. Also, as β is an upper bound of B, we get $b \leq \beta$ for all $b \in B$, and thus $-\beta \leq-b$ for all $b \in B$, giving that $\alpha-\beta \leq a-b$ for all $a \in A$ and $b \in B$. This establishes that $\alpha-\beta$ is a lower bound of C, i.e., $\alpha-\beta \leq \inf C$.

Now we show that $\alpha-\beta$ is the greatest lower bound. Let $\varepsilon>0$. It suffices to show that $\alpha-\beta+\varepsilon$ is not a lower bound of C. Indeed, consider $\alpha+\varepsilon / 2$ and $\beta-\varepsilon / 2$. Since $\alpha=\inf A$ is the greatest lower bound, $\alpha+\varepsilon / 2$ is not a lower bound of A, and thus there exists $a \in A$ such that $a<\alpha+\varepsilon / 2$. Similarly, as $\beta=\sup B$ is the least upper bound, $\beta-\varepsilon / 2$ is not an upper bound of B, and thus there exists $b \in B$ such that $b>\beta-\varepsilon / 2$. Adding the two inequalities, we get $a-b<\alpha-\beta+\varepsilon$. This means that $a-b \in C$ is a number smaller than $\alpha-\beta+\varepsilon$, which is therefore not a lower bound.

Q5. Let $\left(s_{n}\right)$ be a sequence of nonnegative numbers. Prove that $\sum s_{n}^{p}$ converges for all $p \geq 1$ if and only if it converges for $p=1$.

Solution. The forward direction is obvious. Let us prove that if $\sum s_{n}$ converges, then so does $\sum s_{n}^{p}$ for $p \geq 1$. Suppose $\sum s_{n}$ is a convergent series, then $\lim s_{n}=0$. Therefore there exists $N \in \mathbb{N}$ such that $n>N$ implies $s_{n}<1$, which in turn gives $s_{n}^{p}<s_{n}$. By comparison, $\sum s_{n}^{p}$ converges.

Note that even though $s_{n}^{p}<s_{n}$ only for $n>N$, the comparison test still works. Indeed, the intial segment of a series does not change the convergence behaviour. If one wants to be careful, one may use comparison to conclude that $\sum_{n>N} s_{n}^{p}$ converges, and then state that $\sum s_{n}^{p}=\sum_{n \leq N} s_{n}^{p}+\sum_{n>N} s_{n}^{p}$, which is finite as both sums are.

Q6. Let $\left(a_{n}\right)$ be a sequence such that $\lim \inf \left|a_{n}\right|=0$. Prove that it has a subsequence $\left(b_{n}\right)$ such that both $\lim b_{n}$ and $\sum b_{n}$ converge.

Solution. As

$$
\liminf \left|a_{n}\right|=\lim _{k} \inf \left\{\left|a_{n}\right|: n>k\right\}=0
$$

for any $\varepsilon>0$, there exists N such that $\inf \left\{\left|a_{n}\right|: n \geq N\right\}<\varepsilon$.
We construct a sequence $\left(n_{k}\right)$ by induction. Consider the statement P_{k} which states that ther exists natural numbers $n_{0}<n_{1}<\ldots<n_{k}$ such that $\left|a_{n_{i}}\right|<2^{-i}$. Obviously P_{0} is true. Suppose that P_{k} is true. By definition, there exists $n_{k+1}>n_{k}$ such that $\inf \left\{\left|a_{n}\right|: n \geq n_{k+1}\right\}<2^{-(k+1)}$. In particular, $\left|a_{n_{k+1}}\right|<2^{-(k+1)}$. Therefore P_{k+1} holds and we finish the inductive construction of $\left(n_{k}\right)$.

Since $\left|a_{n_{k}}\right|<2^{-k}$, and $\sum 2^{-k}=1$ is a convergent (geometric) series, $\sum\left|a_{n_{k}}\right|$ converges by comparison. This means $\sum a_{n_{k}}$ is absolutely convergent and thus is convergent. Furthermore, that implies $\lim a_{n_{k}}$ converges (to 0).

