
Math 31A 2010.02.09

MATH 31A DISCUSSION

JED YANG

More Applications of the Derivative

1. MVT and Monotonicity

1.1. Mean Value Theorem. Assume that f is continuous on [a, b] and differen-
tiable on (a, b). Then there exists a number c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

In particular, if f(a) = f(b), we get Rolle’s Theorem.

1.2. Exercise 4.3.42. Show that f(x) = x3 − 2x2 + 2x is an increasing function.

Solution. Notice f ′(x) = 3x2 − 4x + 2. What is its minimum? Find its critical
points: f ′′(x) = 6x− 4, so x = 2

3 is the critical point. So f ′(x) has its minimum at

x = 2
3 , which is f ′( 2

3 ) = 2
3 . So f ′(x) > 0, thus f(x) is increasing. ¤

1.3. Exercise 4.3.53–55. Prove that if f(0) = g(0) and f ′(x) ≤ g′(x) for x ≥ 0,
then f(x) ≤ g(x) for all x ≥ 0. Prove the following:

(a) sin x ≤ x for x ≥ 0.
(b) cos x ≥ 1 − 1

2x2,

(c) sin x ≥ x − 1
6x3,

(d) cos x ≤ 1 − 1
2x2 + 1

24x4.

Solution. Let h(x) = f(x)−g(x). Notice h′(x) = f ′(x)−g′(x) ≤ 0. So h(x) is non-
increasing. Since h(0) = 0, we have that for x ≥ 0, h(0) ≤ 0. So f(x) − g(x) ≤ 0,
thus f(x) ≤ g(x), as desired.

Since sinx and x agree at x = 0, and the derivatives cosx ≤ 1 as required, we
apply what we got above to get the desired result. The rest follows similarly. ¤

2. Graphs

2.1. Basics.

2.1.1. Concavity. If f ′(x) is increasing (or f ′′(x) > 0), then f is concave up at x.
If f ′(x) is decreasing (or f ′′(x) < 0), then f is concave down at x.

2.1.2. Inflection. If f ′′(c) = 0 and f ′′(x) changes sign at x = c, then f(x) has a
point of inflection at x = c.

2.1.3. Second Derivative Test. Let f be differentiable and c a critical point.

(a) If f ′′(c) > 0 then f(c) is a local minimum.
(b) If f ′′(c) < 0 then f(c) is a local maximum.
(c) If f ′′(c) = 0 then it is inconclusive, f(c) may be a local min, max, or neither.
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2.2. Exercise 4.4.24. Find the critical points of f(x) = sin2 x + cos x, x in [0, π],
and use the Second Derivative Test to determine whether each corresponds to a
local minimum or maximum.

Solution. Notice f ′(x) = 2 sin x cos x− sinx. Setting f ′(x) = 0 and solving, we get
sinx(2 cos x − 1) = 0, so x = 0, π/3, π. Now f ′′(x) = 2 cos2 x − 2 sin2 x − cos x.
So f ′′(0) = 1, f ′′(π

3 ) = − 3
2 , f ′′(π) = 3, yielding local minima at x = 0, π and

maximum at x = π/3. ¤

2.3. Exercise 4.4.53. If f ′(c) = 0 and f(c) is neither a local min or max, must
x = c be a point of inflection? This is true of most “reasonable” examples, but it
is not true in general. Let

f(x) =

{

x2 sin 1
x

for x 6= 0,
0 for x = 0.

• Use the limit definition of the derivative to show that f ′(0) exists and
f ′(0) = 0.

• Show that f(0) is neither a local min nor max.
• Show that f ′(x) changes sign infinitely often near x = 0 and conclude that

f(x) does not have a point of inflection at x = 0.

Solution. Recall Exercise 3.7.92 from 10/20.

Recall f ′(x) = limh→0
f(x+h)−f(x)

h
. So by definition, f ′(0) = limh→0

f(h)−f(0)
h

=

limh→0 h sin 1
h
. Using Squeeze Theorem and − |h| ≤ h sin 1

h
≤ |h|, we get that

f ′(0) = 0. Away from x = 0, we can use the formula and get f ′(x) = 2x sin 1
x

+

x2 cos 1
x
·(−1) 1

x2 = 2x sin 1
x
−cos 1

x
. Now limx→0 f ′(x) does not exist since limx→0 2x sin 1

x
=

0 by Squeeze Theorem but limx→0 cos 1
x

does not exist. ¤

2.4. Bonus Question. Assume f ′′(x) exists and f ′′(x) > 0 for all x. Show that
f(x) cannot be always negative.

Solution. If f ′(x) ≡ 0, then f ′′(x) ≡ 0, a contradiction. So there exists b such that
f ′(b) 6= 0. Consider the tangent line at x = b to f(x). It is given by the equation
y = f ′(b)(x − b) + f(b). Consider g(x) = f(x) − f ′(b)(x − b) − f(b). Notice that
g′(x) = f ′(x)− f ′(b) and g′′(x) = f ′′(x). So g(b) = g′(b) = 0, and g′′(x) > 0 for all
x. Hence g′(x) is increasing. In particular, g′(x) < 0 for x < b and g′(x) > 0 for
x > b. If x > b, then by MVT, we get

g(x) − g(b)

x − b
= g′(c)

for some c in the interval (b, x). In otherwords, since c > b, we have that g′(c) > 0
and x − b > 0, hence g(x) − g(b) > 0. Similarly, if x < b, we get g′(c) < 0,
x − b < 0, so g(x) − g(b) > 0 as well. We thus conclude g(x) ≥ g(b) for all x. So
f(x) ≥ f ′(b)(x− b) + f(b) for all x. Since f ′(b) 6= 0, there exists x far enough from
the origin such that f ′(b)(x − b) + f(b) > 0, as desired. ¤
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