Math 32A 2010.04.20

MATH 32A DISCUSSION

JED YANG

1. Calculus of Vector Functions

1.1. Exercise 14.2.14. Find the derivative of the vector function

$$\mathbf{r}(t) = \langle at \cos 3t, b \sin^3 t, c \cos^3 t \rangle.$$

Solution. Take the derivative component-wise:

$$\mathbf{r}'(t) = \langle a\cos 3t - 3at\sin 3t, 3b\sin^2 t\cos t, -3c\cos^2 t\sin t \rangle.$$

1.2. Exercise 14.2.38. Evaluate the integral $\int (\cos \pi t \, \mathbf{i} + \sin \pi t \, \mathbf{j} + t \, \mathbf{k}) dt$.

Solution. Integrate component-wise: $\frac{1}{\pi}\sin \pi t \,\mathbf{i} - \frac{1}{\pi}\cos \pi t \,\mathbf{j} + \frac{1}{2}t^2 \,\mathbf{k}$.

1.3. **Exercise 14.2.45.** If $\mathbf{u}(t) = \langle \sin t, \cos t, t \rangle$ and $\mathbf{v}(t) = \langle t, \cos t, \sin t \rangle$, find

$$\frac{d}{dt}[\mathbf{u}(t)\cdot\mathbf{v}(t)].$$

Solution. Recall that $[\mathbf{u}(t) \cdot \mathbf{v}(t)]' = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$. Since $\mathbf{u}'(t) = \langle \cos t, -\sin t, 1 \rangle$ and $\mathbf{v}'(t) = \langle 1, -\sin t, \cos t \rangle$, we get $t \cos t - \sin t \cos t + \sin t + \sin t - \sin t \cos t + t \cos t$.

1.4. Exercise 14.2.47. Show that if \mathbf{r} is a vector function such that \mathbf{r}'' exists, then

$$\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{r}'(t)] = \mathbf{r}(t) \times \mathbf{r}''(t).$$

Solution. Recall that $[\mathbf{u}(t) \times \mathbf{v}(t)]' = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$. So $[\mathbf{r}(t) \times \mathbf{r}'(t)]' = \mathbf{r}'(t) \times \mathbf{r}'(t) + \mathbf{r}(t) \times \mathbf{r}''(t) = \mathbf{r}(t) \times \mathbf{r}''(t)$ since $\mathbf{u}(t) \times \mathbf{u}(t) = 0$ for any \mathbf{u} .

- 1.5. **Basics of Differential Geometry.** Unit tangent vector is given by $\mathbf{T}(t) = \mathbf{r}'(t)/|\mathbf{r}'(t)|$. Arc length is $L = \int_a^b |\mathbf{r}'(t)| \, dt$. Curvature is $\kappa(t) = |\mathbf{T}'(t)|/|\mathbf{r}'(t)| = |\mathbf{r}'(t) \times \mathbf{r}''(t)|/|\mathbf{r}'(t)|^3 = |f''(x)|/[1+(f'(x))^2]^{3/2}$. Unit normal is given by $\mathbf{N}(t) = \mathbf{T}'(t)/|\mathbf{T}'(t)|$. The binormal is $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$.
- 1.6. **Exercise 14.3.4.** Find the length of the curve $\mathbf{r}(t) = \langle \cos t, \sin t, \ln \cos t \rangle$, $0 \le t \le \pi/4$.

Solution. First calculate $|\mathbf{r}'(t)| = |\langle -\sin t, \cos t, -\sin t/\cos t \rangle| = \sec t$. The arc length is $L = \int_0^{\pi/4} \sec t \, dt$.

1.7. **Exercise 14.3.11.** Let C be the curve of intersection of the parabolic cylinder $x^2 = 2y$ and the surface 3z = xy. Find the exact length of C from the origin to the point (6, 18, 36).

Math 32A Yang 2

1.8. **Exercise 14.3.17.** Find the unit tangent and unit normal vectors $\mathbf{T}(t)$ and $\mathbf{N}(t)$, and find the curvature of the curve $\mathbf{r}(t) = \langle 2\sin t, 5t, 2\cos t \rangle$.

Solution. Simply calculate:
$$\mathbf{r}'(t) = \langle 2\cos t, 5, -2\sin t \rangle$$
, $|\mathbf{r}'(t)| = \sqrt{29}$, $\mathbf{T}(t) = \mathbf{r}'(t)/|\mathbf{r}'(t)| = \frac{1}{\sqrt{29}}\langle 2\cos t, 5, -2\sin t \rangle$; $\mathbf{T}'(t) = \frac{1}{\sqrt{29}}\langle -2\sin t, 0, -2\cos t \rangle$, $|\mathbf{T}'(t)| = \frac{2}{\sqrt{29}}$, $\mathbf{N}(t) = \mathbf{T}'(t)/|\mathbf{T}'(t)| = \langle -\sin t, 0, -\cos t \rangle$; $\kappa(t) = |\mathbf{T}'(t)|/|\mathbf{r}'(t)| = \frac{2}{29}$.

1.9. **Exercise 14.3.23.** Find the curvature of $\mathbf{r}(t) = \langle 3t, 4\sin t, 4\cos t \rangle$.

Solution. We have $\mathbf{r}'(t) = \langle 3, 4\cos t, -4\sin t \rangle$, $\mathbf{r}''(t) = \langle 0, -4\sin t, -4\cos t \rangle$, $\mathbf{r}'(t) \times \mathbf{r}''(t) = \langle -16, 12\cos t, -12\sin t \rangle$, $|\mathbf{r}'(t)| = 5$. So $\kappa(t) = |\mathbf{r}'(t) \times \mathbf{r}''(t)| / |\mathbf{r}'(t)|^3 = 20/5^3 = 4/25$.

Alternatively,
$$\mathbf{T}(t) = \mathbf{r}'(t)/|\mathbf{r}'(t)| = \frac{1}{5}\langle 3, 4\cos t, -4\sin t \rangle$$
, $\mathbf{T}'(t) = \mathbf{r}''(t)/|\mathbf{r}'(t)| = \frac{1}{5}\langle 0, -4\sin t, -4\cos t \rangle$, $|\mathbf{T}'(t)| = |r''(t)|/|\mathbf{r}'(t)|^2 = \frac{4}{5}$, and $\kappa(t) = |\mathbf{T}'(t)|/|\mathbf{r}'(t)| = \frac{4}{5}/5 = 4/25$.

1.10. **Exercise 14.3.44.** Given $\mathbf{r}(t) = \langle \cos t, \sin t, \ln \cos t \rangle$. Find the vectors \mathbf{T} , \mathbf{N} , and \mathbf{B} at point (1,0,0).

Solution. First calculate $|\mathbf{r}'(t)| = |\langle -\sin t, \cos t, -\sin t/\cos t \rangle| = \sec t$.