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MATH 32A DISCUSSION

JED YANG

1. CALCULUS OF VECTOR FUNCTIONS
1.1. Exercise 14.2.14. Find the derivative of the vector function
r(t) = (atcos 3t,bsin® t, ccos® t).
Solution. Take the derivative component-wise:

r'(t) = (acos3t — 3atsin 3t, 3bsin® t cos t, —3c cos® tsint).

1.2. Exercise 14.2.38. Evaluate the integral [(cos7ti—+ sinmtj+ tk)dt.
Solution. Integrate component-wise: % sinmti— % cosTtj+ %tQ k. O

1.3. Exercise 14.2.45. If u(t) = (sint,cost,t) and v(t) = (¢, cost,sint), find
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Solution. Recall that [u(t) - v(¢)] = u'(t) - v(t) + u(t) - v/(t). Since u'(t) =
(cost,—sint, 1) and v'(t) = (1,—sint,cost), we get tcost — sintcost + sint +
sint — sint cost + t cost. O

1.4. Exercise 14.2.47. Show that if r is a vector function such that r” exists,

then
d

dt
Solution. Recall that [u(t) x v(t)]" = u’(t) x v(t) +u(t) x v/(t). So [r(t) x r'(¢)]
r'(t) xr'(t) +r(t) x v’ (t) = r(t) x r”(t) since u(t) x u(t) =0 for any u.

[r(t) x ¥'(t)] = r(t) x £ (t).

ol

1.5. Basics of Differential Geometry. Unit tangent vector is given by T(t)
r'(t)/|r'(¢)]. Arc length is L = f: |t'(t)| dt. Curvature is k(t) = |T'(t)] / |r'(¢)]
/() x (&) / | (8)]* = | £ (@) /[1 + (f'(x))2]3/2. Unit normal is given by N(t)
T/(¢t)/ |T'(t)|. The binormal is B(t) = T(t) x N(¢).

1.6. Exercise 14.3.4. Find the length of the curve r(¢) = (cost,sint,Incost),
0<t<m/4

Solution. First calculate |r'(t)] = |(—sint,cost, —sint/cost)| = sect. The arc

length is L = fow/4 sect dt. O

1.7. Exercise 14.3.11. Let C be the curve of intersection of the parabolic cylinder
22 = 2y and the surface 3z = xy. Find the exact length of C' from the origin to the
point (6, 18, 36).
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Solution. The curve is r(t) = (V2t,t,tv/2t/3). Then r'(t) = <1/\/_ \/_2>

Now |r/(t)| = v/1/2t+1+¢t/ —(\/_—1—1/\/_)/\/_ So arc length is L = fo 8(Vt +
1/V)/V2dt = (3632 + 2V1) [V2[® =
O

1.8. Exercise 14.3.17. Find the unit tangent and unit normal vectors T(¢) and
N(t), and find the curvature of the curve r(t) = (2sint, 5¢,2 cost).

Solution. Simply calculate: r'(t) = (2cost,b5,—2sint), |t'(¢t)] = V29, T(t)

r'(t)/ ' (t)| = <2cost 5, —2sint); T'(t) = \/%<7251nt,0,72cost>, T (t)| =
Z5 N(t) = ( )/ T'(t)] = (=sint, 0, —cost); w(t) = |T'(t)] / ' (t)] = 5. U

1.9. Exercise 14.3.23. Find the curvature of r(t) = (3t,4sint, 4 cost).

Solution. We have r'(t) = (3,4 cost, —4sint), v/ (t) = (0, —4sint, —4 cost), r'(t)
v (t) = (=16,12cost, —12sint), |r'(t)] = 5. So s(t) = [¥'(t) x v’ ()| / |v'(t)?
20/53 = 4/25.
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Alternatively, T(t) =1/(t)/ |r
(0, —4sint, —4 cost), |T'(t)| = =
2/5=14/25. O
1.10. Exercise 14.3.44. Given r(t) = (cost,sint,Incost). Find the vectors T, N,
and B at point (1,0,0).

= $(3,4cost, —4sint) T'() =1"t)/|r'(t)| =
O/ (0 = §, and w(t) = [T'()]/ [r'(1)]

Solution. First calculate |r'(t)| = |(— sint, cost, —sint/ cost)| = sect. O
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