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1. Limits and Continuity

1.1. Definitions. Let f be a function of two variables whose domain D includes
points arbitrarily close to (a, b). Then the limit lim(x,y)→(a,b) f(x, y) = L exists
if for every number ε > 0 there is a corresponding number δ > 0 such that if
(x, y) ∈ D, and 0 <

√

(x − a)2 + (y − b)2 < δ then |f(x, y) − L| < ε.
It is continuous at (a, b) if lim(x,y)→(a,b) f(x, y) = f(a, b).

1.2. Exercise 15.2.5. Find the limit, if it exists, or show that the limit does not
exist.

lim
(x,y)→(1,2)

(5x3 − x2y2).

Solution. Recall that polynomials are continuous, hence we may employ the sub-
stitution method to get the limit: 5 · 13 − 12 · 22 = 1. ¤

1.3. Exercise 15.2.16. Find the limit, if it exists, or show that the limit does not
exist.

lim
(x,y)→(0,0)

x2 sin2 y

x2 + 2y2
.

Solution. Notice that 0 ≤ x2

x2+2y2 ≤ 1, so the quantity above is squeezed between 0

and sin2 y → 0, hence the limit is 0. ¤

1.4. Exercise 15.2.38. Determine the set of points at which the function is con-
tinuous:

f(x, y) =

{ xy
x2+xy+y2 if (x, y) 6= (0, 0),

0 otherwise.

Solution. Notice that x2 +xy+y2 = 0 only at (x, y) = (0, 0). Indeed, the minimum
with respect to x is when x = −y/2, which makes the expression 3y2/4. Therefore
the function is continuous at all points besides the origin.

As for the origin, it is not continuous there. Indeed, along the line y = x

the limit is limx→0
x2

x2+x2+x2 = 1
3 . Whereas along the line y = 2x the limit is

limx→0
2x2

x2+2x2+4x2 = 2
7 . ¤

1.5. Exercise 15.2.43. Discuss the continuity of the function

f(x, y) =

{ sin xy
xy

if xy 6= 0,

1 otherwise.
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Solution. Obviously f is continuous at all xy 6= 0. Now fix a point (x0, y0) such that
x0y0 = 0. Take an arbitrary continuous path C(t) = (x(t), y(t)) such that C(0) =
(x(0), y(0)) = (x0, y0), and let z(t) = x(t)y(t). If there is a small neighbourhood
around 0 such that the path lies in the set xy = 0, then the limit is 1. Otherwise,
we may assume f(C(t)) = sin(x(t)y(t))/(x(t)y(t)) = sin(z(t))/z(t). Then we seek
the limit limt→0 f(x(t), y(t)) = limt→0 sin(z(t))/z(t)). But as t → 0, we have
z(t) → z(0) = x(0)y(0) = 0, so the limit is 1 as limz→0 sin z/z = 1. Hence we
conclude that f is continuous everywhere.

Alternatively, consider g(x, y) = xy and h(t) = sin t/t for t 6= 0 and h(t) = 1
for t = 0. Then f(x, y) = h(g(x, y)), and both h and g are continuous everywhere,
hence so is f . ¤

1.6. Exercise 15.2.45. Show that the function f given by f(x) = |x| is continuous
on R

n.

Solution. First recall that a · x = |a| |x| cos θ, where θ is the angle between them.

Therefore a ·x ≤ |a| |x|. Now compute |f(x) − f(a)| = ||x| − |a|| =
√

(|x| − |a|)2 =
√

|x|2 − 2 |x| |a| + |a|2 ≤
√

x · x − 2x · a + a · a =
√

(x − a) · (x − a) = |x − a|. So

if we make a approach x, namely, |x − a| → 0, then |f(x) − f(a)| → 0, namely,
f(x) approaches f(a), as desired. ¤

2. Partial Derivatives

2.1. Definitions. The partial derivative of f with respect to x at (a, b) is fx(a, b) =
g′(a) where g(x) = f(x, b).

2.2. Exercise 15.3.16. Find the first partial derivatives of f(x, y) = x4y3 + 8x2y.

Solution. Treating y constant we get fx(x, y) = 4x3y3 + 16xy. Treating x constant
we get fy(x, y) = 3x4y2 + 8x2. ¤

2.3. Exercise 15.3.28. Find the first partial derivatives of

f(x, y) =

∫ x

y

cos(t2) dt.

Solution. Let A(x) =
∫ x

0
cos(t2)dt, by FTC, we get A′(x) = cos(x2). So f(x, y) =

A(x)−A(y), giving fx(x, y) = A′(x) = cos(x2) and fy(x, y) = −A′(y) = − cos(y2).
¤

2.4. Exercise 15.3.45. Use implicit differentiation to find ∂z
∂x

and ∂z
∂y

, given

x2 + y2 + z2 = 3xyz.

Solution. Applying ∂
∂x

we get 2x + 2z ∂z
∂x

= 3yz + 3xy ∂z
∂x

, solving, we get ∂z
∂x

=
3yz−2x
2z−3xy

. Similarly, ∂z
∂y

= 3xz−2y
2z−3xy

. ¤

2.5. Exercise 15.3.94. If f(x, y) = 3

√

x3 + y3, find fx(0, 0).

Solution. Let g(x) = f(x, 0) = x, so g′(x) = 1. Now fx(0, 0) = g′(0) = 1. Notice
that it would be much more difficult to calculate fx(x, y) directly with y an arbitrary
constant. ¤
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