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1. Higher Partial Derivatives

1.1. Clairaut’s Theorem. If fxy and fyx are continuous then fxy = fyx.

1.2. Exercise 15.3.60. Verify that the conclusion Clairaut’s Theorem holds for
u = xyey. That is, uxy = uyx.

Solution. Notice ux = yey, uxy = ey+yey, and uy = xey+xyey, uyx = ey+yey. �

1.3. Exercise 15.3.82. For an ideal gas of mass m at absolute temperature T ,
pressure P , and volume V , we have PV = mRT , where R is the gas constant.
Show that ∂P

∂V
∂V
∂T

∂T
∂P

= −1.

Solution. Notice ∂P
∂V

= −mRT/V 2, ∂V
∂T

= mR/P , ∂T
∂P

= V/mR, so multiplying
gives −1, recognising that mRT = PV . �

1.4. Exercise 15.3.87. Is it possible that there is a function f whose partial
derivatives are fx(x, y) = x + 4y and fy(x, y) = 3x − y?

Solution. Negative, since fxy = 4 and fyx = 3 are continuous but not equal, con-
tardicting Clairaut’s theorem. �

1.5. Exercise 15.3.91. Use Clairaut’s Theorem to show that if the third-order
partial derivatives of f are continuous, then fxyy = fyxy = fyyx.

Solution. Clairaut gives fxy = fyx, taking the partial with respect to y gives fxyy =
fyxy. Applying Calairaut to fy gives fyxy = fyyx. �

1.6. Exercise 15.3.92. How many kth-order partial derivatives does a function
of two variables have? How about n variables? If these partial derivatives are all
continuous, how many of them can be distinct?

Solution. Counting mixed partials as different, we get 2k or nk for 2 or n variables,
respectively. If they are all continuous, then for the case of 2 variables, we only care
how many times we take derivative with respect to x, which could be any integer
times between 0 and k, inclusive. So there are k + 1 possibly different partial
derivatives. As for general n, this requires knowing partitions of integers, and is
beyond the scope of this class. [Talk to me if you are interested; this is an area
known as combinatorics, which is my main field of focus.] �



Math 32A Yang 2

2. Tangent Planes and Linear Approximations

2.1. Basics. Assume f has continuous partial derivatives. An equation of the
tangent plane to the surface z = f(x, y) at the point P (x0, y0, z0) is

z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

If the partial derivatives fx and fy exist near (a, b) and are continuous at (a, b),
then f is differentiable at (a, b).

If z = f(x, y), then the total differential is given by

dz = fx(x, y) dx + fy(x, y) dy =
∂z

∂x
dx +

∂z

∂y
dy.

2.2. Exercise 15.4.16. Explain why f(x, y) = sin(2x + 3y) is differentiable at
(−3, 2) and find the linearisation at that point.

Solution. Notice that fx(x, y) = 2 cos(2x + 3y) and fy(x, y) = 3 cos(2x + 3y) are
continuous, hence we obtain differentiability. The linearisation is z − f(−3, 2) =
fx(−3, 2)(x + 3) + fy(−3, 2)(y − 2), which is z = 2(x + 3) + 3(y − 2). �

2.3. Exercise 15.4.33. The length and width of a rectangle are measured as 30
cm and 24 cm, respectively, with an error in measurement of at most 0.1 cm in
each. Use differentials to estimate the maximum error in the calculated area of the
rectangle.

Solution. Let ℓ = 30, w = 24, and A = wℓ, dℓ = dw = 0.1. Then dA = ∂A
∂ℓ

dℓ +
∂A
∂w

dw = wdℓ + ℓdw = 5.4 cm2. �

2.4. Exercise 15.4.40. Four positive numbers, each less than 50, are rounded to
the first decimal place and then multiplied together. Use differentials to estimate
the maximum possible error in the computed product that might result from the
rounding.

Solution. Similar to above, we get 4 · 503
· 0.5. �

2.5. Exercise 15.4.42. Find an equation of the tangent plane to a surface S
at point P (2, 1, 3), given that the curves r1(t) =

〈

2 + 3t, 1 − t3.3 − 4t + t2
〉

and

r2(u) =
〈

1 + u2.2u3
− 1, 2u + 1

〉

both lie on S.

Solution. The cross product of the tangent vectors of the curves at the point spec-
ified gives a normal. �

2.6. Exercise 15.4.45. Prove that if f is a function of two variables that is differ-
entiable at (a, b), then f is continuous at (a, b).

Solution. Recall that there exists ε1, ε2 that approaches 0 as (∆x, ∆y) → (0, 0)
such that f(a + ∆x, b + ∆y) − f(a, b) = fx(a, b)∆x + fy(a, b)∆y + ε1∆x + ε2∆y.
Taking the limit (∆x, ∆y) → (0, 0) of both sides, the right side becomes zero. So
lim(∆x,∆y)→(0,0) f(a + ∆x, b + ∆y) = f(a, b), as desired. �
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