Math 32A 2010.05.25

MATH 32A DISCUSSION

JED YANG

1. DIRECTIONAL DERIVATIVES

1.1. Basics. If f(z,y, 2) is differentiable, we get the gradient
vf(‘r7 y7 Z) = <f:1)(x7 y7 Z)7 fy(‘r7 y7 2)7 fz(x7 y7 Z)>

is a vector-valued function. Then the directional derivative of f in the direction of
vector wis Dy f = Vf-u.

1.2. Exercise 15.6.4. Find the directional derivative of f(z,y) = 2%y — y* at
(2,1) in the direction 0 = /4.

Solution. Here Vf(z,y) = (2zy3 32z%y* — 4y*) so Vf(2,1) = (4,8). Now u =
(cos,sinf) = (v2/2,v/2/2). Then Dyf = V[ -u=6v2. O

1.3. Exercise 15.6.16. Find the directional derivative of f(z,y,2) = /zyz at
(3,2,6) in the direction of the vector v = (-1, —2,2).

Solution. Here Vf(x,y,z) = (yz,xz,2y)/2\/Tyz, so Vf(3,2,6) = <1,%,%>. Now
u=v/|v|=(—%,-%,%). Then Dyf =Vf-u=1 O

1.4. Exercise 15.6.37b. Assume that v and v are differentiable functions of z and
y, show that V(uv) = uVv 4+ vVu.

Solution. Let us examine the first coordinate of both sides. On the left, we get
(uv); = uvy + vu,, which is what we have on the left. Similarly for the second
coordinate, so we are done. We also have rules such as V(au + bv)aVu + bV for
a,b € R, and V(%) = L¥u_uVe, O
1.5. Exercise 15.6.42. Find equations of the tangent plane and the normal line
to the given surface

x — z = 4arctan(yz)
at (1+7,1,1).

Solution. Let F(x,y,z) = 4arctan(yz) — x + z, then the surface is F(z,y,z) = 0,
thus VF(1 + m, 1, 1) gives a normal vector. Calculating, we get VF(z,y,2) =
(—1,42/(1+y?2%),1 + 4y/(1 + y?2%)), and VF(1 + 7,1,1) = (—1,2,3). Tangent
plane is given by —(:v —1—m)4+2(y—1)4+3(z — 1) = 0. Normal line is given by
z—1—-7m _ y—1 _ 2—1 O

-1 — 2 3'

1.6. Exercise 15.6.50. Find the equation of the tangent plane to the hyperboloid
22/a? +y? /b — 22 /c® =1 at (20, y0, 20)-
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Solution. Let f(x,y,2) = 22/? + y?/b?> — 22/c%. Then a normal is given by Vf =
(2z/a?,2y/b%, —2z/c*), so we have V f(zo, yo, 20) = (2w0/a?, 2yo/b*, —220/c?). An
equation of the tangent plane is therefore 2§ (x —x0) + #3 (¥ — yo) — 2 (2 — 20) = 0.
Rearranging, we get xzo/a® + yyo/b? — 220/c®> = 1, using the fact that (z9,yo, 20)
satisfies f(z,y,2) = 1. O

1.7. Exercise 15.6.55,57,58. These three problems are interesting and worth
looking at.

1.8. Exercise 15.6.59. Find parametric equations for the tangent line to the curve
of intersection of the paraboloid z = x? + y2 and the ellipsoid 422 + 3% + 22 = 9 at
the point (—1,1,2).

Solution. We can take gradient of each and evaluate at the point (—1,1,2), we get
(—2,2,—1) and (—8,2,4). Taking the cross product gives us a vector (10, 16,12)
that is the direction of the tangent line. The details are left as exercise. (I

2. LOCAL EXTREMA

2.1. Basics. The critical points of f are where Vf = 0 or Vf is undefined. The
local extrema only occur at critical points (but not all critical points are local
extrema). Using the second derivative test, we have D = fozfyy — 3y; if D <0
we get saddle point, if D > 0, then we get local min if f,, > 0, and local max if
fzz < 0. In other cases, we don’t know, and it could be anything.

2.2. Exercise 15.7.11. Find the local maximum and minimum values and saddle
point(s) of the function f(z,y) = 2% — 122y + 8y>.

Solution. Following the recipe, we calculate Vf = <3x2 — 12y, —12z + 24y2> and
set it equal to (0,0). So z = 2y? and 12y* — 12y = 0, yielding y = 0 or y = 1, with
x = 0 and = = 2, respectively. At (0,0), D(0,0) < 0 so we get saddle point. At
(2,1), D(2,1) > 0, and f44(2,1) > 0, so we get local min. O
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