Math 4707 Midterm 1 Practice Questions

Questions courtesy of Jang Soo Kim.
Problem 1. Given a finite set A, subsets $B \subseteq A, C \subseteq A$, and suppose B and C are $\operatorname{disjoint}(B \cap C=\varnothing)$. Find the number of subsets $S \subseteq A$ such that $|\bar{S} \cap B|=1$ and $|S \cap C|=2$.

Problem 2. For an integer t, we define $s(t)$ to be the sum of digits of the binary form of t. [For example, $s(13)=1+1+0+1=3$ as $13=1101_{2}$ in binary.] Find the sum $s(0)+s(1)+s(2)+\ldots+s(511)$ (in decimal).

Problem 3. Find the number of ways to put n indistinguishable balls into k bins labelled $1,2, \ldots, k$ such that the bin labelled i gets at least i balls.

Problem 4. Find the number of shortest (monotonic) paths on the grid from $A=(0,0)$ to $B=(10,6)$ with given conditions.
(a) No condition.
(b) Visit $C=(3,2)$.
(c) Visit C but not $D=(7,4)$.
(d) Visit neither C nor D.

Problem 5. What is the number of 5 -digit numbers in which at least two digits are equal?
Problem 6. The sequence a_{n} is given by $a_{0}=0, a_{1}=2$, and $a_{n}=6 a_{n-1}-8 a_{n-2}$ for $n \geq 2$. Find a formula for a_{n}.
Problem 7. Prove the following identity for $n \geq 2$:

$$
0\binom{n}{0}+2\binom{n}{2}+4\binom{n}{4}+\ldots=n \cdot 2^{n-2}
$$

Problem 8. Suppose $n, m, k \in \mathbb{N}$ are positive integers. Prove the following identity:

$$
\sum_{i=0}^{n} i\binom{n}{i}\binom{m}{k-i}=n\binom{n+m-1}{k-1}
$$

