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Math 4707 Random Graphs
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The aim is to use random graphs to show that graphs with no short cycles can have high chromatic
number. These lecture notes roughly follow Diestel’s text.

Theorem 1 (Markov’s inequality). Let X ≥ 0 be a random variable on Ω and a > 0. Then

Pr[X ≥ a] ≤ E(X)/a.

Proof.

E(X) =
∑
t∈Ω

Pr(t) ·X(t)

≥
∑
t∈Ω

X(t)≥a

Pr(t) ·X(t)

≥
∑
t∈Ω

X(t)≥a

Pr(t) · a

≥ Pr[X ≥ a] · a.
�

Definition 2. Fix V = [n] and consider all (simple) graphs on vertex set V . For each of the
(
n
2

)
pairs

of vertices, decide whether there is an edge in the following manner. Pick 0 ≤ p ≤ 1 and let q = 1 −
p. Independently for each pair of vertices, let the edge be present with probability p and absent with
probability q. [There is a way to formally construct a probability space that satisfies this requirement.] Call
this space G(n, p).

Example 3. Let G ∈ G(n, p) be sampled. Fix a graph H on [n] with m edges. Then Pr[H ⊆ G] = pm and

Pr[H = G] = pmq

(
n
2

)
−m.

Lemma 4. Let X : G(n, p) → N be the random variable that counts the number of k-cycles. The expected
number of k-cycles in G ∈ G(n, p) is

E[X] =
n!pk

2k(n− k)!
.

Proof. Linearity of expectation; necklaces have 2k-fold symmetry. �

Definition 5. Let G = (V,E) be a graph. A set S ⊆ V of vertices is independent if the vertices in
S are pairwise non-adjacent. In other words, the induced graph G[S] is empty and has no edges. The
independence number of a graph G, denoted α(G), is the maximum size of an independent set.

Lemma 6. For any graph G, we have |V (G)| ≤ α(G)χ(G).

Proof. Each colour class is an independent set. �
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Lemma 7. Let k > 0 be an integer, and p = p(n) be a function of n such that p ≥ (6k lnn)/n for n large.
Sample Gn ∈ G(n, p) for each n. Then

lim
n→∞

Pr
[
α(Gn) ≥ 1

2n/k
]

= 0.

Proof. Let r =
⌈

1
2n/k

⌉
. By union bound, the probability that Gn has a set of r independent vertices is at

most

Pr[α(Gn) ≥ r] ≤
(
n
r

)
q

(
r
2

)
≤ nrq

(
r
2

)
= (nq(r−1)/2)r

≤ (ne−p(r−1)/2)r,

since q = 1− p ≤ e−p. Now for large n, we get

ne−p(r−1)/2 = ne−pr/2+p/2

≤ ne−
3
2 lnn+p/2

≤ n · n−3/2e1/2

=
√
e√
n
,

which tends to 0 as n→∞, as desired. �

Definition 8. The girth of a graph G, denoted g(G), is the length of a shortest cycle. [By convention,
write g(G) =∞ if G is acyclic, and say ∞ > k for any integer k.]

Theorem 9 (Erdős 1959). For any integer k, there exists a graph H with girth g(H) > k and chromatic
number χ(H) > k.

Proof. Assume that k ≥ 3, fix ε with 0 < ε < 1/k, and let p = nε−1. Say a cycle is short if its length is at
most k. Let X(G) be a random variable denoting the number of short cycles in a random graph G ∈ G(n, p).
By Lemma 4, we get

E[X] =

k∑
i=3

n!pi

2i(n− i)!
≤ 1

2

k∑
i=3

nipi ≤ 1
2 (k − 2)nkpk,

where (np)i ≤ (np)k because np = nε ≥ 1.
By Markov’s inequality (Theorem 1), we get

Pr[X ≥ n/2] ≤ E[X]/(n/2)

≤ (k − 2)nk−1pk

= (k − 2)nk−1n(ε−1)k

= (k − 2)nkε−1.

Note that kε− 1 < 0, so
lim
n→∞

Pr[X ≥ n/2] = 0.

Note that for large n, p = nε−1 ≥ (6k lnn)/n, so Lemma 7 gives

lim
n→∞

Pr
[
α ≥ 1

2n/k
]

= 0.

Pick n large enough such that Pr[X ≥ n/2] < 1
2 and Pr[α ≥ 1

2n/k] < 1
2 . Then there is some G ∈ G(n, p)

with fewer than n/2 short cycles and α(G) < 1
2n/k.

Delete a vertex from each of the short cycles to obtain a subgraph H. Since H has no short cycles,
g(H) > k. Since we deleted fewer than n/2 vertices, we get |V (H)| > n/2. Also note that α(H) ≤ α(G).
By Lemma 6, we get

χ(H) ≥ |V (H)|
α(H)

>
n/2

α(G)
> k,

as desired. �


