APPENDIX

Common Errors In Proofs

The following list describes some common errors made by students while creating proofs. The list is intended to help you avoid making the same errors.

1. An example does not constitute a valid proof.

Suppose you want to prove the claim:

Let $a, b, c \in \mathbb{Z}$. If a|(bc) then either a|b or a|c.

Incorrect Proof: Let a = 5, b = 3, and c = 10. Then a|(bc) because 5|30. Also, since 5|10 it is true that a|c, so the claim is true.

The error in the proof: In this case it is easy to see that the attempted proof is not valid, because the claim is not true. Consider the case where a = 6, b = 3, and c = 8. Then a|(bc) because 6|24, but $6 \not\mid 3$ and $6 \not\mid 8$, so a divides neither b nor c.

The moral: An example does not prove a universally quantified claim (such as $\forall a, b, c \in \mathbb{Z}, a | (bc) \rightarrow (a|b) \lor (a|c)$). However, a single counter example does *disprove* such a claim.

2. Introducing the same variable for two different values is an error.

Suppose you want to prove the assertion:

Let $a, b, \in \mathbb{Z}$ where $a =$	1 mod 3 and $b = 2 \mod 3$.	Then $(a + b) = 0 \mod 3$.
--	------------------------------	-----------------------------

Incorrect Proof: Since $a = 1 \mod 3$ there is an integer k in \mathbb{Z} such that a = 3k + 1. Since $b = 2 \mod 3$, we can write b = 3k + 2. Thus

a + b = (3k + 1) + (3k + 2) = 6k + 3 = 3(2k + 1), so $(a + b) = 0 \mod 3$.

The error in the proof: The attempted proof assumes that b = a + 1 since b - a = (3k + 2) - (3k + 1) = 1. So the proof is only valid for that limited set of choices for *a* and *b*.

A correct proof: Since $a = 1 \mod 3$ there is an integer k in \mathbb{Z} such that a = 3k + 1. Since $b = 2 \mod 3$, there is an integer n in \mathbb{Z} such that b = 3n + 2. Therefore a + b = (3k + 1) + (3n + 2) = 3k + 3n + 3 = 3(k + n + 1), so $(a + b) = 0 \mod 3$. 3. A proof by contradiction starts with an assumption that you eventually want to reject. The rejection isn't because you provide a proof that the opposite of the assumption is true. The rejection is due to the assumption leading to a conclusion that we know is impossible.

Suppose you want to use a proof by contradiction to prove the claim:

If $a \in \mathbb{R}$ and a > 1, then $0 < \frac{1}{a} < 1$.

Since $a \cdot \frac{1}{a} = 1 > 0$ and a > 1 > 0, we know that $\frac{1}{a}$ must also be positive, so I will drop the $0 < \frac{1}{a}$ part of the claim for the rest of this discussion.

Not really a "proof by contradiction": Assume that $1 \le \frac{1}{a}$. Since a > 1, we can divide both sides by a (without reversing the inequality) to get $\frac{a}{a} > \frac{1}{a}$ so $1 > \frac{1}{a}$. This contradicts the assumption that $1 \leq \frac{1}{a}$. Thus it must be that $a > \frac{1}{a}$.

Why the proof is inadequate: The proof above is really a direct proof. We could shorten it to:

Since a > 1, we can divide both sides by a (without reversing the inequality) to get $\frac{a}{a} > \frac{1}{a}$ so $1 > \frac{1}{a}$. The assumption was never really used in an important way.

A real proof by contradiction: Assume that $1 \le \frac{1}{a}$. Since a > 0, we can multiply both sides of the assumed inequality by a without reversing the inequality sign to get $a \cdot 1 \le a \cdot \frac{1}{a}$ which is the same as $a \le 1$. But this contradicts the hypothesis a > 1. This contradiction was caused by assuming that $1 \le \frac{1}{a}$, so to remove the contradiction it must be the case that $1 > \frac{1}{a}$.

(This contradiction proof used the tautology $[P \rightarrow Q] \Leftrightarrow [(P \land (\neg Q)) \rightarrow (\neg P)].$ It also actually used the assumption as a key element in deriving the contradiction.)

- 4. Declaring a proof to be trivial is not in and of itself a complete proof. Especially when it doesn't meet the requirements to be an actual trivial proof (namely, if the right hand side of the implication is not always true, then a trivial proof is not possible). Don't use the word "trivial" to mean "too easy to bother writing the details". The word has a technical meaning when discussing proofs.
- 5. Even if the conclusion in an implication is false, the implication is not necessarily false.

Suppose you want to prove the claim:

Let k > 1 with $k \in \mathbb{Z}$. If $2^k \equiv 0 \mod 3$ then $8 \equiv 1 \mod 3$.

Incorrect Proof: The claim is false. Here are two counter-examples: if k = 1 then $8^1 \neq 1 \mod 3$ (8 = 2 · 3 + 2 so 8 = 2 mod 3). If k = 3 then $8^3 = 512 \neq 1 \mod 3$ $(512 = 170 \cdot 3 + 2)$. In fact, whenever k is odd, $8^k \equiv 2 \mod 3$.

The Error: The claim is actually true.

Correct Proof: Since $k \ge 1, 2^k = 2 \cdot 2 \cdots 2$ is **not** divisible by 3. Thus 2^k is never congruent to 0 mod 3 for k > 1. That means the hypothesis of the claim is false, so the implication is true. (This is a vacuous proof.)