
1: {d(a, z), shortest path} shortestPath(weighted, connected, simple graph G,
vertex a, vertex z)

2: # Initialization

3: B = {a}
4: n = 0 # initial iteration
5: r = a # the most recent vertex added to B
6: d(a, a) = 0 # the distance from a to a is known
7: for each vertex v in G − {a}
8: d0(v) = ∞

9: # Start the main loop

10: while z 6∈ B
11: n = n + 1
12: A becomes the set of vertices in V − B which are adjacent to r
13: for each vertex, u in A # a shorter estimate may be possible
14: dn(u) = min{dn−1(u), d(a, r) + w(r , u)}
15: if dn(u) 6= dn−1(u)
16: p(u) = r # u is currently best reached by passing through r
17: for each vertex, v ∈ (V − A) # no change in the estimate
18: dn(v) = dn−1(v)

19: x = a vertex in V−B with minimum value for dn(u) among vertices u∈V−B
20: d(a, x) = dn(x) # the true distance from a to x is now known
21: add x to B
22: r = x # x becomes the most recently added vertex

23: # z has been reached, now construct the path

24: P = an ordered list with z as its only element # start building the path
25: r = z # the most recently added vertex
26: while r 6= a
27: x = p(r) # r can be reached by passing through x
28: prepend x to P # add next vertex to the front of P
29: r = x

30: return {d(a, z), P}
31: end shortestPath

3

4

4

7

12 3

5 5

6 5

a z

s

t

qy

u m

2

d p
n B r A a q y s t m u z a q y s t m u z
0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 {a} a {u, y} 3 4 a a
2 {a, y} y {q, u, t} 9 6 4 y y
3 {a, u, y} u {t} 6
4 {a, t, u, t {q,m} 7 11 t t

y}
5 {a, q, t, q {s} 12 11 q

u, y}
6 {a,m, q, m {s, z} 12 18 m

t, u, y}
7 {a,m, q, s {z} 16 s

s, t, u, y}


