TABLE 3.15 Some General Proof Strategies

If the	assertion	•	•	•	
--------	-----------	---	---	---	--

claims something is true for all integers $n \ge n_0$		mathematical induction or complete induction			
is stated explicitly or implicitly as an implication		direct; indirect; contradiction			
	contains an existential quantifier	a constructive proof; a nonconstructive proof			
	contains a universal quantifier	finding a counterexample; the choose method			
contains the phrase "if and only if"		to prove the two implications separately; to produce a sequence of equivalent statements linking the two sides of the biconditional			
	is stated as an equivalence	to look for a complete set of implications that are relatively easy to prove			
	can be easily split into a collection of independent assertions	proof by cases			
	is an implication with a true conclusion	trivial proof			
	is an implication with a false hypothesis	trivial (vacuous) proof			
is about membership in a set		direct proof: verify that the element satisfies the set membership requirements			
	asserts one set is a subset of another	to show that a generic element of the first set is also a member of the second set			
	asserts the equality of two sets	to show that each set is a subset of the other; to use a sequence of reversible statements with the fundamental set properties and other theorems			

Then try ...