
CHAPTER

5 Review

5.1 Definitions in Chapter 5

5.1 Permutation; Combination

5.2 Independent Tasks; Mutually Exclusive Tasks

5.4 Digit

5.5 Alphanumeric

5.23 Monotone Sequence

5.29 The Euler Totient Function

5.2 Some Counting Formulas

The Independent Tasks Principle
If a project can be decomposed into two independent tasks with n1 ways to
accomplish the first task and n2 ways to accomplish the second task, then the project
can be completed in n1 · n2 ways.

The Mutually Exclusive Tasks Principle
If a project can be decomposed into two mutually exclusive tasks with n1 ways to
accomplish the first task and n2 ways to accomplish the second task, then the project
can be completed in n1 + n2 ways.

TABLE 5.2 Arranging r elements from a set containing n distinct elements
With Order Without Order

Without Repetition P(n, r) = n!
(n − r)! C(n, r) = n!

r ! · (n − r)!

With Repetition nr C(n + r − 1, r) = (n + r − 1)!
r ! · (n − 1)!
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Suppose there exists a set of n items containing n1 identical items of type 1,
n2 identical items of type 2, . . . , and nk identical items of type k, where
n = n1 + n2 + · · · + nk . The number of visually distinguishable ways to arrange the
n items in a row is

multinomial(n1, n2, . . . , nk) =
n!

n1! · n2! · · · nk !

Suppose there exists a set of n items containing n1 identical items of type 1,
n2 identical items of type 2, . . . , and nk identical items of type k, where
n = n1 + n2 + · · · + nk . The number of visually distinguishable ways to arrange the
n items in a row is

multinomial(n1, n2, . . . , nk) =
n!

n1! · n2! · · · nk !

THEOREM 5.7 The Multinomial Counting Theorem---Version 1

Suppose there exists a set of n distinguishable items that is to be partitioned into k
distinguishable subsets. Subset 1 will have n1 items, subset 2 will contain n2 items,
. . . , and subset k will contain nk items, where n = n1 + n2 + · · · + nk . The number
of ways to accomplish this partitioning is

multinomial(n1, n2, . . . , nk) =
n!

n1! · n2! · · · nk !

Suppose there exists a set of n distinguishable items that is to be partitioned into k
distinguishable subsets. Subset 1 will have n1 items, subset 2 will contain n2 items,
. . . , and subset k will contain nk items, where n = n1 + n2 + · · · + nk . The number
of ways to accomplish this partitioning is

multinomial(n1, n2, . . . , nk) =
n!

n1! · n2! · · · nk !

THEOREM 5.8 The Multinomial Counting Theorem---Version 2

5.3 Sample Exam Questions
1. Elections

(a) A school district has an opening on the school board.
There are six candidates. In how many different order-
ings can the candidates’ names be listed on the ballot?

(b) Suppose instead that the school district has three wards.
There are three candidates for ward 1, four candidates for
ward 2, and two candidates for ward 3. If the wards are
listed in the natural order on the ballot, in how many dif-
ferent orderings can the candidates’ names be listed on
the ballot?

2. A math major has agreed to tutor a desperate high school
algebra student. There is a big exam in a week, so the high
school student would like to meet on three different days dur-
ing the next week. The tutor has ruled out Sunday. How many
different 3-day tutoring combinations are possible?

3. I want to make a string of Christmas lights to string across
the front of the classroom. The string will contain 40 lights.
I have 12 red bulbs, 12 blue bulbs, 10 green bulbs, and 6 yel-
low bulbs. How many visually distinguishable light strings
can I create? (You need not produce an explicit number for
this problem.)

4. Use a combinatorial proof to show that

n(n + 1)
2

+ (n − 1)n
2

= n2.

[Hint: The following diagram might provide some in-

spiration.]
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5. A group of students consists of math majors, computer sci-
ence majors, and students in the honors program. There are
seven math majors, thirteen computer science majors, and
four honors students.

There are five students with double majors in math and
computer science, three math students in the honors program,
and two computer science students in the honors program.
One student is a double major in math and computer science
and is also in the honors program.

How many students are in the class?

6. A booster pack of Pokémon T© cards contains 11 distinct
cards. Assume that there are 150 distinct Pokémon charac-
ters (and hence 150 distinct cards).
(a) How many booster packs must be purchased to ensure

that your collection will have at least one pair of dupli-
cates?

(b) How many distinct booster packs can be manufactured
(assuming that all cards are available in some booster
pack)?

7. A box contains seven blue balls, five red balls, and six yellow
balls.
(a) In how many visually distinguishable ways can four balls

be chosen, and placed in an ordered line?
(b) In how many visually distinguishable ways can a set of

four balls be chosen?
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(c) Suppose that one ball is to be chosen from the box. If
a blue ball is chosen, a single die will be rolled and the
number on the top face will be recorded. If a red ball is
chosen, a coin will be flipped and the face (head or
tail) that is on top will be recorded. Finally, if a yellow
ball is chosen, two dice will be rolled and the sum of the
numbers on the top faces will be recorded.
In how many ways can a result be recorded?

8. A summer camp has 18 children attending for the week.
(a) The children have been divided into two teams of nine

children per team. They are about to run (one at a time)

through an obstacle course. The only constraints on
the ordering is that the teams must alternate. In how
many ways can the children be placed to run the obstacle
course, assuming the teams have already been formed?

(b) Suppose the children are placed into three teams of six
children per team. Now the constraint is that 1 person
from each team must run the obstacle course before the
next set of three (again one per team) can start the course.
In how many ways can the children be placed to run the
obstacle course, assuming the teams have already been
formed?
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5.4 Projects
Mathematics

1. Find or produce a proof of another formula discovered by
Euler:

Let a and m be positive integers with gcd(a,m) = 1.
Then

aφ(m) ≡ 1 (mod m),

where φ(m) is the Euler totient function. Comment on the va-
lidity of the formula if gcd(a,m) > 1. Finally, describe the
connection between this formula and Fermat’s Little Theo-
rem.

2. A derangement is a permutation of the integers 1, 2, . . . , n
such that none of the integers appear in their natural posi-
tion. Use inclusion–exclusion to count the number, Dn , of
derangements of the integers 1, 2, . . . , n.

3. Write an expository paper on the Möbius inversion formula.
Make special note of the role of the inclusion–exclusion the-
orem.

4. If you have already had a course in group theory, write a brief
expository paper on Polya’s counting theory.

Computer Science

1. Write a library that contains functions or methods for cal-
culating the various counting formulas in this chapter. Pay
attention to the need for very large numbers. That means
you should either take advantage of a large integer package,

or use a system that will indicate numeric overflow, or else
write the functions using a symbolic mathematics program,
such as Mathematica or Maple.

2. Find a good integer factorization algorithm, and then write a
program that implements the calculation of ν(a) in Proposi-
tion 5.3.

3. Investigate gray codes and their use in generating all 2n sub-
sets of a set of size n. Write a program that implements an
algorithm based on gray codes to list efficiently all the dis-
tinct subsets of a set of size n.

4. Use your favorite graphical user interface–based object-
oriented language to create a class that will create Venn dia-
grams which contain three circles inside a box representing
the universal set. The diagrams should also allow the number
of elements in each region to be recorded within the region
on the diagram.

General

1. Write an expository paper on some of the distinctive count-
ing practices observed by anthropologists as they study other
cultures.

2. Write an expository paper on some of the distinctive counting
practices employed by ancient cultures.

3. Write a brief account about how to use an abacus.

5.5 Solutions to Sample Exam Questions
1. (a) This is a simple permutation problem. There are

P(6, 6) = 6! = 720 ways to list the names on the ballot.
(b) This is best solved by going back to the basic count-

ing principles (Section 5.1.1). Since the wards are to be
listed in order, the problem is simpler than it might have
been. There are P(3, 3) = 3! = 6 ways to list the can-
didates for ward 1, P(4, 4) = 4! = 24 ways to list the
candidates for ward 2, and P(2, 2) = 2! = 2 ways to list
the candidates for ward 3. Since these ward listings are
independent, there are 6 · 24 · 2 = 288 ways to create the
ballot.

2. This is a simple combination problem. There are

C(6, 3) = 6!
3! · 3! = 20

ways to set up the tutoring appointments.

3. This is a multinomial counting problem. There are

multinomial(12, 12, 10, 6) = 40!
12! · 12! · 10! · 6!

= 1,361,054,797,417,974,859,200

ways to arrange the lights.
If you have chosen not to memorize every counting for-

mula, this problem can also be solved another way. There
are C(40, 12) ways to choose the positions for the red bulbs.
There are then C(40 − 12, 12) = C(28, 12) ways to choose
the positions for the blue bulbs. There are then C(16, 10)

ways to choose the positions for the green bulbs. Finally,
there are C(6, 6) ways to choose the positions for the yellow
bulbs. Since these choices are independent (after decreas-
ing the number of available positions), the Independent Tasks
Principle implies that there are

C(40, 12) · C(28, 12) · C(16, 10) · C(6, 6)

= 40!
12! · 28! ·

28!
12! · 16! ·

16!
10! · 6! ·

6!
6! · 0!

= 40!
12! · 12! · 10! · 6!

ways to arrange the lights.

4. Consider an arrangement of letters that follows the pattern in
the hint, but having n rows. There will be n letters per row,
for a total of n2 letters in the pattern. The pattern will con-
tain n rows with x’s, arranged as a triangle. There will be∑n

i=1 i = n(n+1)
2 x’s in the pattern. The o’s will also be ar-

ranged in a triangle, but there will only be n−1 rows, so there
will be

∑n−1
i=1 i = (n−1)n

2 o’s in the pattern. Since the sum
of the numbers of x’s and o’s should equal the total number
of letters in the pattern,

n(n + 1)
2

+ (n − 1)n
2

= n2.
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5. Let M denote the set of math majors, C denote the set of
computer science majors, and H denote the set of students
in the honors program. The inclusion–exclusion theorem im-
plies that

|M ∪ C ∪ H | = |M | + |C | + |H |
− |M ∩ C | − |M ∩ H | − |C ∩ H |
+ |M ∩ C ∩ H |
= 7+ 13+ 4− 5− 3− 2+ 1 = 15

students are in the class.

6. (a) The pigeon-hole principle can be used. The 150 distinct
cards can be thought of as the pigeon holes. The cards
actually purchased can be thought of as the pigeons. Let
k represent the number of packs that must be bought to
guarantee that 11k > 150. Then k = 14. With 154
cards in the 14 booster packs, there must be at least one
duplicate.

(b) There can be

C(150, 11) = 14,885,236,522,829,400

distinct booster packs if two different booster packs only
need to differ by one card. There can be as few as 14
distinct booster packs if minimal overlap is desired.

7. (a) This is a permutation with repetition (which can easily
be solved using the Independent Tasks Principle). There
are three distinct colors from which to choose four col-
ors, with repetition. There are three color choices for the
first ball, three for the second ball, three for the third, and
three color choices for the forth ball. In all, there will be
34 = 81 distinct ways to create a visually distinguishable
line of four balls.

(b) This is a combination with repetition. There are three
colors from which to choose four balls. In all, there are
C(3+ 4− 1, 4) = C(6, 4) = 15 visually distinct sets of
four balls. (You might want to list them.)

(c) The choice of a ball results in one of three mutually ex-
clusive tasks that determine the final outcome. The Mu-
tually Exclusive Tasks Principle indicates that the num-
ber of ways to accomplish these three tasks should be
added. There are six ways to record the number on the

top face of a single die, and two ways to record the result
of a coin flip. The number of distinct sums of the faces on
a pair of die is not so simple. For example, 4+3 = 5+2.
The smallest possible value is 1+1 = 2, the largest value
is 6+ 6 = 12. There are thus only 11 possible values for
the sum.
In all, there are 6+ 2+ 11 = 19 ways to record a result.

8. (a) There are C(2, 1) = 2 ways to determine which team
goes first. There are P(9, 9) = 9! = 362,880 ways to
arrange the members of a team in order. The Indepen-
dent Tasks Principle implies that there are 2 · 9! · 9! =
263,363,788,800 ways to place the children in order for
the obstacle course.

(b) This is a bit more complex than the previous part. The
order can be determined in six rounds. In each round,
the three children who will be the next group of team
representatives can be chosen from among the remain-
ing children who have not already been assigned to the
ordering.
Consider the choice at round k. The previous k−1 rounds
have eliminated 3(k − 1) children from the pool of can-
didates. One child from each team will be chosen. There
are 6− (k−1) = 7− k children left on each team, so the
next representative can be chosen in C(7− k, 1) = 7− k
ways. The three representatives can then be arranged in
P(3, 3) = 3! = 6 ways. Thus, round k can be accom-
plished in 6 · (7− k)3 ways. The rounds are independent
(since the pool of candidates has been reduced at each
new round), so there are

6∏

k=1

6 · (7− k)3

ways to determine the ordering. Notice that

6∏

k=1

6 · (7− k)3 = 66 ·
6∏

k=1

k3 = 174,142,258,688,000.

It is also possible to express this as (3!)66!6!6! (order
each of the teams in 6! ways, then at each round order
the 3 runners in 3! ways)


