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7.2 Some Useful Generating Functions
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7.3 Sample Exam Questions
1. Create a recursive algorithm that calculates

(n
r
)

for inte-
gers, n and r , with 0 ≤ r ≤ n. Use Pascal’s theorem:(n
r
) = (n−1

r−1
)+ (n−1

r
)
.

2. Recall the recursive definition of the Sierpinski curves Sn .
The recursions follow.
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Draw S2, appropriately labeling the subpieces that are
visible.

3. Find a closed-form solution for the recurrence relation de-
fined by

an = an−1 + 12an−2 for n ≥ 2, and a0 = 0, a1 = 14.

4. Find a closed-form solution for the recurrence relation de-
fined by

an = 2an−1 − 3 for n ≥ 1, and a0 = 1.

5. A recursive divide-and-conquer algorithm has a complexity
function that satisfies f (1) = 4 and
f (n) = 8 f

( n
4
) + 5n. Find a good big-2 reference function

for f .

6. The following is a correct algorithm for searching an unsorted
list, a, of integers for the integer, x . If x is present, it returns
the first position in the list where x occurs; otherwise it re-
turns −1. The algorithm assumes that n = 2k , for some
k ∈ N.

1: integer
search(x, {a0, a1, a2, . . . , an−1})

2: if n == 1
3: if a0 == x
4: return 0
5: else
6: return −1
7:
8: # search the left and right

halves of the list
9:
10: i = search(x, {a0, . . . , a⌊ n

2 −1
⌋})

11: j = search(x, {a⌊ n
2
⌋, . . . , an−1})

12:
13: if i > −1
14: return i
15: else
16: return j
17: end search

(a) What is the recurrence relation that counts the number of
comparisons for this algorithm? (The critical steps are at
lines 2, 3, and 13).

(b) What is a good big-2 reference function for algorithm
search.

7. Evaluate
(−2

4
)
.

8. Use generating functions to find a closed-form solution for
the following recurrence relation.
• an = 2an−1 + 5
• a0 = 1

9. The generating function for 1
1+z is 1 − z + z2 − z3 + · · · .

Calculate the generating function for 1
(1+z)2 .

7.4 Projects
Mathematics

1. Find out what a Sierpinksi gasket is. Write a short expository
paper.

2. Write a paper about linear nonhomogeneous recurrence rela-
tions with constant coefficients. Present a solution technique
and provide a few instructive examples.

3. Find a version of the master theorem that is appropriate for
recurrence relations of the form

a1 f
(⌊n

b

⌋)
+ a2 f

(⌈n
b

⌉)
+ cnv .

Provide a proof for the theorem.

4. Write a brief expository paper about exponential generating
functions.

5. Obtain a copy of Concrete Mathematics by Graham, Knuth,
and Patashnik [43]. Master the solution of the original Jose-
phus problem (with every third person eliminated). Write a
self-contained, coherent exposition of the solution.

Computer Science

1. Write a program to produce Persian rugs.

2. Write a program to draw Sierpinski curves. The program
should animate the process. Make the drawing slow enough
to see the curves as they evolve.

3. Write a program to use adaptive quadrature to do numerical
integration.

4. Write a program to simulate the Towers of Hanoi.

5. Write a program to simulate the Josephus problem (with ev-
ery third person eliminated).
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7.5 Solutions to Sample Exam Questions
1. This is the same as algorithm PascalTriangle, with a

few changes in notation.

1: integer Cnr(integer n, integer r)
2: if (n == 0) or (r == n)
3: return 1
4: else
5: return Cnr(n-1,r-1) +

Cnr(n-1,r)
6: end Cnr

2. The following diagram shows S2, with the recursions (ex-
cluding the base case) annotated.
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3. This is a linear homogeneous recurrence relation with con-
stant coefficients. The characteristic equation is

x2 − x − 12 = (x + 3)(x − 4) = 0.

The roots are r1 = −3 and r2 = 4. The general solution is
therefore

an = θ1(−3)n + θ2(4)n .

The coefficients can be determined by solving the following
linear system of equations.

θ1 + θ2 = 0

−3θ1 + 4θ2 = 14

The first equation implies that θ1 = −θ2. Substituting
into the second equation leads to 7θ2 = 14, so θ2 = 2 and
θ1 = −2.

Thus,

an = (−2)(−3)n + 2(4)n for — n ≥ 0.

A quick check is in order. The following table compares
a few values, calculated first directly from the recurrence re-
lation, and second from the closed-form formula.

n via recurrence relation (−2)(−3)n + 2(4)n

0 0 0

1 14 14

2 14 14

3 182 182

4 350 350

4. This is not homogeneous. Back substitution is the simplest
way to find a closed-form solution for this recurrence rela-
tion.

an = 2an−1 − 3

= 2
[
2an−2 − 3

]− 3 substitute

= 22an−2 − 3 · 2 − 3 · 20 simplify

= 22 [2an−3 − 3
]− 3 · 2 − 3 · 20 substitute

= 23an−3 − 3 · 22 − 3 · 2 − 3 · 20 simplify

...
...

= 2na0 − 3
n−1∑
i=0

2i

= 2n + (−3)
2n − 1
2 − 1

= 2n + (−3)(2n − 1)

= −2n+1 + 3

Thus, an = −2n+1 + 3, for n ≥ 0. This can be checked
against the original recurrence relation for a few values.

n via recurrence relation −2n+1 + 3

0 1 1

1 −1 −1

2 −5 −5

3 −13 −13

4 −29 −29

5. The master theorem (version 2) with a = 8, b = 4, c = 5,
d = 4, and v = 1 applies. Since a = 8 > 41 = bv , and
log4(8) = 3

2 (4 · √
4 = 8), f ∈ 2(n

√
n).

6. (a) The base case uses two comparisons, so d = 2. All other
invocations also use two comparisons (lines 2 and 13),
so c = 2. There are two recursive invocations, each
on a list half the size of the original, so a = b = 2.
The recurrence relation for this algorithm (with respect
to comparisons) is f (1) = 2 and f (n) = 2 f

( n
2
)+ 2.

(b) Since a > 1, version 1 of the master theorem implies
that f ∈ 2(n).

7.
(−2

4

)
= (−2)(−3)(−4)(−5)

4! = 120
24

= 5

8. Let A(z) = ∑∞
n=0 anzn be the generating function for the

recurrence relation. Then

∞∑
n=1

anzn = 2
∞∑

n=1

an−1zn + 5
∞∑

n=1

zn .

Thus

A(z) − a0 = 2z
∞∑

k=0

ak zk + 5
(

1
1 − z

− 1
)

.
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This simplifies to

A(z)(1 − 2z) = 5 · 1
1 − z

− 4,

so
A(z) = 5 · 1

1 − 2z
· 1

1 − z
− 4

1
1 − 2z

.

Table 7.10 implies

A(z) = 5 ·
 ∞∑

k=0

2k zk

 ∞∑
k=0

zk

− 4
∞∑

k=0

2k zk .

Theorem 7.22 can be used to change this to

A(z) = 5
∞∑

k=0

 k∑
j=0

2 j 1k− j

 zk − 4
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2k zk

=
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k=0

(
5 · 2k+1 − 1

2 − 1
− 4 · 2k

)
zk

=
∞∑

k=0

(
3 · 2k+1 − 5

)
zk .

In summary,

A(z) =
∞∑

n=0

(
3 · 2n+1 − 5

)
zn .

Thus, an = 3 · 2n+1 − 5, for n ≥ 0.
This can be checked against the original recurrence re-

lation for a few values.

n an = 2an−1 + 5 3 · 2n+1 − 5

0 1 1

1 7 7

2 19 19

3 43 43

4 91 91

9. Use Theorem 7.22.

1
(1 + z)2 = 1

1 + z
· 1

1 + z
=

∞∑
k=0

 k∑
j=0

(−1) j (−1)k− j

 zk

It is appropriate at this point to stop and determine the
value of the inner summation for a few values of k. The fol-
lowing table helps to organize this information.

k 0 1 2 3∑k
j=0(−1) j (−1)k− j 1 −2 3 −4

There seems to be a very simple pattern. In fact, it is easy
to see how the pattern arises. When k is even, k − j will be
even whenever j is even and odd whenever j is odd. Thus,
the product, (−1) j (−1)k− j , will be 1 whenever k is even.
The sum will add k + 1 one’s. On the other hand, if k is odd,
k − j will be odd whenever j is even and even when j is odd.
Thus, the product, (−1) j (−1)k− j , will be −1 whenever k is
even. The sum will add k + 1 one’s.

This can be summarized very simply:

k∑
j=0

(−1) j (−1)k− j = (−1)k(k + 1).

It is now possible to complete the original task.

1
(1 + z)2 =

∞∑
k=0

 k∑
j=0

(−1) j (−1)k− j

 zk

=
∞∑

k=0

(−1)k(k + 1)zk

= 1 − 2z + 3z2 − 4z3 + 5z4 − · · · .

This can also be done by using derivatives. Start with

1
1 + z

= 1 − z + z2 − z3 + · · ·

and take the first derivative of both sides. The result is

− 1
(1 + z)2 = 0 − 1 + 2z − 3z2 + · · · .

Consequently,

1
(1 + z)2 = 1 − 2z + 3z2 − · · · .


