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Chapter 7 Review

7.3 Sample Exam Questions

1.

Create a recursive algorithm that calculates (') for inte-
gers, n and r, with 0 < r < n. Use Pascal’s theorem:

() =02+,

. Recall the recursive definition of the Sierpinski curves Sj,.

The recursions follow.

Syt AN By /G N\ D,/
nt Apt \Bnt —— Dyt /A
B,: By, /Cn-l | Ay \Bn-l
Co: G \Dn-l — By /Cn-l

Dn: Dn—l /An—l 11 Cn—l \Dn—l

Draw S, appropriately labeling the subpieces that are
visible.

. Find a closed-form solution for the recurrence relation de-

fined by

an =ay_1+12a, o forn >2, and ap = 0, a1 = 14.

. Find a closed-form solution for the recurrence relation de-

fined by

ap =2a,_1—3 forn>1, and ag = 1.

. A recursive divide-and-conquer algorithm has a complexity

function that satisfies f(1) = 4 and
f(n) =8f (%) + 5n. Find a good big-© reference function
for f.

. The following is a correct algorithm for searching an unsorted

list, a, of integers for the integer, x. If x is present, it returns
the first position in the list where x occurs; otherwise it re-
turns —1. The algorithm assumes that n = 2]‘, for some
k e N.

7.4 Projects

1: integer

search (x, {ag, ap, a>, ..., ap—1})
2 ifn == 1
3: if a9 == x
4: return 0
5: else
6: return —1
7:
8: # search the left and right
halves of the list
9:
10: i = search (x, {ao""’aL%*]J})
11: Jj = search (x, {aL%J""’an—l})
12:
13: if i > -1
14: return i
15: else
16: return j

17: end search

(a) What is the recurrence relation that counts the number of
comparisons for this algorithm? (The critical steps are at
lines 2, 3, and 13).

(b) What is a good big-® reference function for algorithm
search.

. Evaluate (12)

. Use generating functions to find a closed-form solution for

the following recurrence relation.
e ap =2a,_1+5
e aqp=1

. The generating function for Lis1—z4+2-P2+--

1+z

Calculate the generating function for m

Mathematics

. Find out what a Sierpinksi gasket is. Write a short expository

paper.

. Write a paper about linear nonhomogeneous recurrence rela-

tions with constant coefficients. Present a solution technique
and provide a few instructive examples.

. Find a version of the master theorem that is appropriate for

recurrence relations of the form

ar ((3]) v (3] e

Provide a proof for the theorem.

. Write a brief expository paper about exponential generating

functions.

. Obtain a copy of Concrete Mathematics by Graham, Knuth,

and Patashnik [43]. Master the solution of the original Jose-
phus problem (with every third person eliminated). Write a
self-contained, coherent exposition of the solution.

Computer Science

1. Write a program to produce Persian rugs.

. Write a program to draw Sierpinski curves. The program

should animate the process. Make the drawing slow enough
to see the curves as they evolve.

. Write a program to use adaptive quadrature to do numerical

integration.

4. Write a program to simulate the Towers of Hanoi.

5. Write a program to simulate the Josephus problem (with ev-

ery third person eliminated).
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1. This is the same as algorithm PascalTriangle, with a

few changes in notation.

1: integer Cnr(integer n, integer r)
2 if (n == 0) or (r == n)

3: return 1

4 else

5 return Cnr(n-1,r-1) +

Cnr(n-1,r)
6: end Cnr

2. The following diagram shows Sp, with the recursions (ex-

cluding the base case) annotated.

3. This is a linear homogeneous recurrence relation with con-

stant coefficients. The characteristic equation is
X2 —x—12=(x+3)x -4 =0.

The roots are r| = —3 and ro = 4. The general solution is
therefore

an = 01(=3)" +6,(H".
The coefficients can be determined by solving the following
linear system of equations.

01+6,=0
—301 +46, = 14
The first equation implies that 61 = —6;. Substituting
into the second equation leads to 760, = 14, so 6 = 2 and
0 = —2.
Thus,

an = (=2)(=3)" +2(4)" for—n > 0.

A quick check is in order. The following table compares
a few values, calculated first directly from the recurrence re-
lation, and second from the closed-form formula.

n viarecurrence relation (—=2)(=3)" +2(4)"
0 0 0
1 14 14
2 14 14
3 182 182
4 350 350

4. This is not homogeneous. Back substitution is the simplest

way to find a closed-form solution for this recurrence rela-
tion.

ap =2a,_1—3
=2[2a,_p — 3] —3 substitute
=2%a,_»—3-2-3-2 simplify
=22[2a,_3 3] -3-2-3-2° substitute
=23, 3-3-22-3.2-3.20 simplify

n—1
=2"ay -3 2
i=0

S it
B 21
=2" 4+ (=3)(2" — 1)
— _2n+1 +3

Thus, @, = —2"T1 + 3, for n > 0. This can be checked
against the original recurrence relation for a few values.

n via recurrence relation —ontl 4 3
0 1 1
1 -1 —1
2 =5 =5
3 —13 —13
4 -29 -29

. The master theorem (version 2) witha = 8, b = 4, ¢ = 5,

d = 4, and v = 1 applies. Sincea = 8 > 4! = p? and
log;(8) = 3 (4- V4 =8), f € O(nyn).

. (a) The base case uses two comparisons, so d = 2. All other

invocations also use two comparisons (lines 2 and 13),
so ¢ = 2. There are two recursive invocations, each
on a list half the size of the original, so a = b = 2.
The recurrence relation for this algorithm (with respect
to comparisons) is f(1) =2 and f(n) =2f (%) + 2.

(b) Since a > 1, version 1 of the master theorem implies
that f € ©(n).
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. Let A(z) = ZZO:O anz"* be the generating function for the

recurrence relation. Then
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Thus

0
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A@Z) —apg =2 kis(— —1).
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This simplifies to

A)(1—-27)=5-

— 4,
1 -z

S0
1 1 1

. —4 .
1-2z 1—z 1-2z

A(x)=5-
Table 7.10 implies

oo oo oo
Ay =5-| Y 2K D0F ] —ad 2tk
k=0 k=0 k=0

Theorem 7.22 can be used to change this to

00 k 00
AR =5 221'1"*1' zk—422kzk
k=0 \j=0 k=0

k=0
In summary,
oo
A=Y (3 ol 5) .
n=0

Thus, a, = 3-2"t! =5, forn > 0.

This can be checked against the original recurrence re-

lation for a few values.

n ap=2a,_1+5 3.2"t1_5

1 1
1 7 7
2 19 19
3 43 43
4 91 91

9. Use Theorem 7.22.
k
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It is appropriate at this point to stop and determine the
value of the inner summation for a few values of k. The fol-
lowing table helps to organize this information.

k 0 1 2 3
Z’J‘.=0(—1)f(—1)k—i 1 -2 3 -4

There seems to be a very simple pattern. In fact, it is easy
to see how the pattern arises. When & is even, k — j will be
even whenever j is even and odd whenever j is odd. Thus,
the product, (—l)j(—l)k_j, will be 1 whenever k is even.
The sum will add k + 1 one’s. On the other hand, if k is odd,
k — j will be odd whenever j is even and even when j is odd.
Thus, the product, (—l)j (—l)k_j, will be —1 whenever &k is
even. The sum will add k£ + 1 one’s.
This can be summarized very simply:

k
Y DI =D = =k + D).
j=0

It is now possible to complete the original task.
1 oo k

= | D
1+22 = 20

oo
=Y DF ke + 1k
k=0

=1-27432 -4 454 —....

This can also be done by using derivatives. Start with

=l-z+2-2 4

14z

and take the first derivative of both sides. The result is

1
—— s =014+ 20 -3+
(I+2)
Consequently,
: 1-2z+32°
L T
(1+2)?



