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8.2 Occupancy Problems
Solutions to all eight categories of occupancy problems, where n represents the number of objects and k represents the

number of containers.

Objects

Containers

Distinguishable Indistinguishable

Distinguishable
∅: kn

¬∅: k!S(n, k)

∅: ∑k
i=1 S(n, i)

¬∅: S(n, k)

Indistinguishable
∅: (k+n−1

n
)

¬∅: (n−1
k−1

)
∅: ∑k

i=1 p(n, i)

¬∅: p(n, k)

∅: containers may be empty

¬∅: containers must contain at least one object

8.3 Sample Exam Questions
1. A small high school is holding its annual awards banquet.

There are 15 awards (such as “most improved student,” “best
in math”) that will be distributed among the nine graduating
seniors. A student may receive more than one award, but
the school authorities make sure that every student receives
at least one award. In how many ways can the awards be
distributed?

2. List all the partitions of 7.
3. Orthogonal Latin squares

(a) What is the maximum number of mutually orthogonal
Latin squares of order n that are possible?

(b) How many mutually orthogonal Latin squares of order 6
are possible?

(c) Briefly describe the connection between mutually or-
thogonal Latin squares of order n and finite projective
planes of order n.

4. Let F be a finite projective plane. Suppose that there is a line
in F that contains n + 1 points.
(a) What is the order of F?
(b) How many lines contain each point in F?
(c) How many points are in F?

5. BIBDs
(a) Produce a (13, 4, 1)-design by starting with the block

0
1
3
9

and adding 1 (mod 13).

(b) Recall the basic necessary conditions for the existence
of a balanced incomplete block design with parameters
(v, b, r, k, λ):

bk = vr

and
r(k − 1) = λ(v − 1).

Prove the first condition: bk = vr .

(c) (Extra credit) Prove the second condition:
r(k − 1) = λ(v − 1).

6. A knapsack has volume 8. Use algorithm Knapsack to find
an optimal packing, given the three items described by the
following table.

Item X Y Z

Benefit 4 6 3

Volume 3 4 2

Quantity 3 1 2

7. Recall the encoding scheme for a 7-bit Hamming code.

x5 = x2 + x3 + x4 (mod 2)

x6 = x1 + x3 + x4 (mod 2)

x7 = x1 + x2 + x4 (mod 2)

The string 1101000 has been received.
(a) What is the nearest code word?
(b) What is the best estimate of the message that was sent?
(c) What is the Hamming weight of the received string?

8. How are the minimum distance in a linear code and Hamming
weight related?

9. Systems of distinct representatives
(a) Define system of distinct representatives.
(b) Find all systems of distinct representatives for the sets

A1 = {2, 3}, A2 = {2, 3}, and A3 = {1, 3}.
(c) State a condition that characterizes when a collection of

sets has a system of distinct representatives.

10. Ramsey numbers
(a) Define the Ramsey number R( j, k).
(b) Prove that R(4, 2) = 4.



8.5 Sample Exam Solutions 29

8.4 Projects
Mathematics

1. Write a brief expository paper on R. A. Fisher’s use of com-
binatorial designs in his work on the design of (statistical)
experiments.

2. Write a brief expository paper about the Catalan numbers.
Include a discussion of their role in counting.

3. Write a brief expository paper about derangements.
4. Write a brief expository paper about the Hamming bound for

error-correcting codes.
5. Write a brief expository paper about Hadamard designs and

Hadamard matrices.
6. Write a report that contains a proof of Ramsey’s theorem

(Theorem 8.75).

Computer Science

1. Write a program to calculate p(n, k) and p(n).

2. Write a program to calculate S(n, k) and s(n, k).

3. Write a program that implements algorithm Knapsack.
There should be an option to print (or suppress printing) the
table of intermediate calculations.

4. Find out how to encode and decode messages in a 15-bit
Hamming code. Then write a program that implements these
operations.

5. Write a program which finds a set of n − 1 mutually orthog-
onal Latin squares of order n. Make a crude estimate of a
big-2 reference function for your algorithm before deciding
how large n can be and still have the program terminate in a
reasonable amount of time.

6. Write a program that determines a system of distinct repre-
sentatives for a collection of sets. Use the (inefficient) algo-
rithm described just after Example 8.51 on page 507.

8.5 Solutions to Sample Exam Questions
1. This is an OD CD ¬∅ container problem with

n = 15, k = 9. There are consequently 9!S(15, 9)
ways to distribute the awards. [In case you are curious,
9!S(15, 9) = 24,359,586,451,200.]

2. There are p(7) = 15 distinct partitions of 7:

7 = 7 7 = 6+ 1
7 = 5+ 1+ 1 7 = 4+ 3
7 = 4+ 1+ 1+ 1 7 = 3+ 3+ 1
7 = 3+ 2+ 1+ 1 7 = 3+ 1+ 1+ 1+ 1
7 = 2+ 2+ 1+ 1+ 1 7 = 2+ 1+ 1+ 1+ 1+ 1

7 = 5+ 2
7 = 4+ 2+ 1
7 = 3+ 2+ 2
7 = 2+ 2+ 2+ 1
7 = 1+ 1+ 1+ 1+ 1+ 1+ 1

3. (a) Theorem 8.21 implies that there can be at most n − 1
mutually orthogonal Latin squares of order n.

(b) It is not possible to find even two mutually orthogonal
Latin squares of order 6.

(c) Corollary 8.31 states the following:
A finite projective plane of order n exists if and only if
there is a set of n − 1 mutually orthogonal Latin squares
of order n.

4. (a) A finite projective plane with n + 1 points per line has
order n (Definition 8.27).

(b) Each point is contained by n + 1 lines (Theorem 8.26).

(c) There are n2 + n + 1 points in F (Theorem 8.26).

5. (a) The blocks can be generated as in the following table.

0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
3 4 5 6 7 8 9 10 11 12 0 1 2
9 10 11 12 0 1 2 3 4 5 6 7 8

It is traditional to rearrange the blocks as

0 1 2 3 0 1 2 3 4 5 0 1 0
1 2 3 4 4 5 6 7 8 9 6 7 2
3 4 5 6 5 6 7 8 9 10 10 11 8
9 10 11 12 7 8 9 10 11 12 11 12 12

(b) See Theorem 8.35.
The first equation is verified by counting all the 1s in M
two different ways.
Since there are b blocks, each containing k varieties, each
of the b columns of M will contain k 1s, for a total of bk
1s. On the other hand, each of the v varieties is in r
blocks, so each of the v rows of M contains r 1s, for a
total of vr 1s. Therefore, bk = vr .

(c) See Theorem 8.35.
The second equation is verified by counting the 1s in
a sub-matrix of M . Start by choosing any variety, u.
Delete the row of M that corresponds to u and delete
every column that corresponds to a block that does not
contain u. Now count the 1s in the matrix, Mu , that re-
mains.
Since u is in r blocks, there will be r columns in Mu .
Each of those columns will contain k − 1 1s (since the
1 in u’s row has been removed). On the other hand, u is
in λ common blocks with each of the v − 1 other vari-
eties. So each of those varieties contributes λ 1s to Mu .
Consequently, r(k − 1) = λ(v − 1).
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6. T K

v X Y Z B(v) X Y Z

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

2 0 0 3+ B(0) = 3 3 0 0 1

3 4+ B(0) = 4 0 3+ B(1) = 3 4 1 0 0

4 4+ B(1) = 4 6+ B(0) = 6 3+ B(2) = 6 6 0 1 0

5 4+ B(2) = 7 6+ B(1) = 6 3+ B(3) = 7 7 1 0 1

6 4+ B(3) = 8 6+ B(2) = 9 3+ B(4) = 9 9 0 1 1

7 4+ B(4) = 10 6+ B(3) = 10 3+ B(5) = 10 10 1 1 0

8 4+ B(5) = 11 B(7) = 10 3+ B(6) = 12 12 0 1 2

The optimal solution is to pack one item Y and two item Z ’s, for a total benefit of 12. Note the change in row 8 to
handle the limitation that only one item Y is available.

7. (a) The recalculated check bits are x5 = 0, x6 = 0, x7 = 1.
An error has occurred, since the received x7 and com-
puted x7 differ. If x1 were in error, both x6 and x7 would
differ, so x1 must be correct. Similarly, if x2 or x3 were
in error, there would be two check bits that differ. If x4
were in error, all three check bits would differ. There-
fore, the error is in the check bit, x7. The nearest code
word is therefore 1101001.

(b) The best estimate of the original message is the first four
bits of the nearest code word. For this string, the message
would be 1101.

(c) Hw(1101000) = 3
8. Corollary 8.52 states the following:

The minimum distance, d , in a binary linear error-
correcting code is the smallest nonzero Hamming
weight among the code words.

9. (a) Definition 8.61:
Let A1, A2, . . . , An be n (not necessarily distinct) sub-
sets of a set U . A list, {r1, r2, . . . , rn}, of elements
in U is called a system of distinct representatives for
{A1, A2, . . . , An} if
• ri ∈ Ai , for i = 1, 2, . . . , n
• ri 6= r j , for i 6= j

(b) There are two systems of distinct representatives:
r1 = 2, r2 = 3, r3 = 1 and r1 = 3, r2 = 2, r3 = 1.

(c) The marriage condition:

Let A1, A2, . . . , An be n (not necessarily
distinct) subsets of a set U . The collec-
tion, {A1, A2, . . . , An}, is said to satisfy
the marriage condition if for every k with
1 ≤ k ≤ n and every choice of a
size-k subcollection, {Ai1 , Ai2 , . . . , Aik }, with
1 ≤ i1 < i2 < · · · < ik ≤ n

|Ai1 ∪ Ai2 ∪ · · · ∪ Aik | ≥ k.

Theorem 8.63 proves that the marriage condition does
characterize the existence of a system of distinct repre-
sentatives.

10. (a) Definition 8.68:

The Ramsey number, R( j, k), is the smallest
integer such that every set, S, with at least
R( j, k) elements satisfies the ( j, k) Ramsey
condition.

This assumes Definition 8.67:
Let S be a set with n elements. Let j ≥ 2 and k ≥ 2.
S satisfies the ( j, k) Ramsey condition if for every par-
tition of the two-element subsets of S into the disjoint
sets, X and Y , there is either a j-element subset, T , of
S such that every two-element subset of T is in X , or
else there is a k-element subset, U , of S such that every
two-element subset of U is in Y .

(b) See Example 8.54 on page 511.


