
A Summation IdentityCallie Wurtz
1 MotivationHow many re
tangles 
an you �nd in this 2 × 2 square?

In a 3 × 3 square? In a 4 × 4 square? How about an 8 × 8 square?
The generalized answer to these questions demonstrates an interesting 
onne
tion between 
ubes, triangularnumbers, and squares. Robert G. Stein used this question as the inspiration for a 
ombinatorial proof thatthe sum of the �rst n 
ubed numbers is equal to the square of the nth triangular number [Ste71, p. 161-2℄.Though the identity is often proved using mathemati
al indu
tion, Stein notes that the indu
tion proof is\quite unenlightening." Counting the number of re
tangles in an n×n square in two di�erent ways gives a
lever 
ombinatorial proof.
2 Preliminary IdeasYou should be familiar with the terms independent andmutually ex
lusive ; the Rule of Sum and the Ruleof Produ
t 
ounting prin
iples are impli
itly used. If you are not familiar with these de�nitions, please referto the \Common De�nitions" �le.The proof also assumes knowledge of summation notation and its properties, in
luding the Change ofVariable te
hnique. Consult the \Common De�nitions" �le if you are not 
omfortable with summationnotation.Familiarity with the following theorem is ne
essary.
Theorem 1 Sum of the �rst n positive integersFor all positive integers n,

n∑

i=1

i =
n(n + 1)

2
.As you may have already predi
ted from the motivation se
tion, this proof uses a few basi
 
on
eptsfrom geometry. However, an elementary understanding of these terms is all that is ne
essary, so most of thede�nitions are given informally. 1



Definition 1 Triangular NumbersFor any positive integer n, the nth triangular number is given by Tn = 1 + 2 + · · · + (n − 1) + n. The�rst few triangular numbers are 1, 3, 6, 10, 15, 21, . . . .The name triangular number 
omes from the fa
t that these numbers 
an be expressed by a regular triangleof equally spa
ed points [Wei05℄.
Figure 1: The triangular numbers 1, 3, 6, and 10.Sin
e the proof 
ounts re
tangles positioned on a square grid, it is therefore assumed that the re
tangleshave integer dimensions as de�ned below.

Definition 2 Dimension of a Re
tangleLet i and j be positive integers. The dimension of a re
tangle is denoted by i × j, where i 
orrespondsto the number of unit 
ells in the horizontal dire
tion and j 
orresponds to the number of unit 
ells in theverti
al dire
tion.
Definition 3 TransformationA transformation is a one-to-one, onto mapping whose domain and range are the points in a plane.In this exposition, the obje
t of the transformations will be a re
tangle.
Definition 4 TranslationA translation is a type of transformation. It is the rigid motion in whi
h all points of the �gure are movedin the same dire
tion and the same distan
e.
Definition 5 RotationA rotation is also a type of transformation. One point of the plane, 
alled the 
enter of rotation, is held�xed, and the �gure is turned about the 
enter of rotation a �xed number of degrees.
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3 The Problem Presented

Theorem 2For n > 0,
n∑

k=1

k3 =

(

n∑

k=1

k

)2

.

4 The Solution by Counting

Note: The first counting method has been changed slightly from Stein’s proof.

4.1 First Counting MethodConsider an n×n square that is divided as a grid into unit squares. We are 
ounting the number of re
tangles(re
all that a square is a re
tangle) in this n × n square.The �rst 
ounting method 
onsiders the verti
al and horizontal movement of the re
tangles. We beginby 
onsidering the 
ase that the re
tangle is a square. For an i × i square, where 1 ≤ i ≤ n, there are n − ispots that the square 
an be translated horizontally to. In
luding the position that it is in, there are a totalof n − i + 1 horizontal positions for the square. In the same way, there are n − i + 1 verti
al positions. Sin
eits verti
al movement is independent of its horizontal movement, there are a total of (n − i + 1)2 squares ofdimension i × i in the larger n × n square.Now suppose the re
tangle is not a square. Then it has dimensions i×j, where i 6= j. Assume i < j. In thehorizontal dimension, there are (n− i+ 1) positions for this re
tangle. There are likewise (n− j+ 1) verti
alpositions for this re
tangle, whi
h are independent of the horizontal positions. Sin
e i 6= j, a 90◦ rotationprodu
es another non-square re
tangle (of dimension j×i). Thus there are 2·(n−i+1)·(n−j+1) non-squarere
tangles with dimensions i and j. We now 
onsider the 
hoi
es for dimension j. Sin
e j is stri
tly greaterthan i and di�erent 
hoi
es for j are mutually ex
lusive, there are ∑n

j=i+1 2 (n− i+ 1)(n− j+ 1) non-squarere
tangles with a shorter side of dimension i.Be
ause a re
tangle is either a square or it is not, there are a total of
(n− i+1)2 +

∑n

j=i+1 2 (n− i+1)(n− j+1) re
tangles, where i is the dimension of the shorter side. All thatwe have left to 
onsider are the possibilities for the dimension i. As we have already established, 1 ≤ i ≤ n.Consequently, there are a total of
n∑

i=1



(n − i + 1)2 +

n∑

j=i+1

2 (n − i + 1)(n − j + 1)



re
tangles in an n×n square. Some algebra is ne
essary to simplify this sum. Though it looks 
ompli
ated,it is easily understood if you follow it 
arefully step-by-step. Begin with the inside summation and worktoward the outside.
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n∑

i=1



(n − i + 1)2 +

n∑

j=i+1

2 (n − i + 1)(n − j + 1)





=

n∑

i=1



(n − i + 1)2 + 2 (n − i + 1)

n∑

j=i+1

(n − j + 1)



 Fa
tor the 
onstants out of the inside summation.
=

n∑

i=1

[

(n − i + 1)2 + 2 (n − i + 1)

n−i∑

m=1

(n − (m + i) + 1)

] Change of variable where m = j − i.
=

n∑

i=1

[

(n − i + 1)2 + 2 (n − i + 1)

(

n−i∑

m=1

(n − i + 1) −

n−i∑

m=1

m

)] Property of summations.
=

n∑

i=1

[

(n − i + 1)2 + 2 (n − i + 1)

(

(n − i) · (n − i + 1) −
(n − i)(n − i + 1)

2

)] Theorem 1.
=

n∑

i=1

[

(n − i + 1)2 + 2 (n − i + 1)

(

1

2
(n − i) · (n − i + 1)

)] Simplify inside the parentheses.
=

n∑

i=1

[

(n − i + 1)2 + (n − i + 1)2(n − i)
] Simplify again.

=

n∑

i=1

(n − i + 1)2(1 + n − i) Fa
tor out an (n − i + 1) term.
=

n∑

i=1

(n − i + 1)3Further simpli�
ation reveals that
n∑

i=1

(n − i + 1)3 = (n − 1 + 1)3 + (n − 2 + 1)3 + · · · + (n − (n − 1) + 1)3 + (n − n + 1)3

= n3 + (n − 1)3 + · · · + 23 + 13

=

n∑

k=1

k3.

4.2 Second Counting MethodNow we will 
ount the re
tangles in an n × n square based on the lo
ation of a given re
tangle's lowerleft vertex. Pi
ture again the n × n square. There are n2 pla
es for the lo
ation of a re
tangle's bottomleft 
orner. These in
lude every point in the square where lines meet ex
ept the upper and right-handboundaries.
H 2 , 1 L

H 3 , 3 L

H 3 , 2 L

H 3 , 1 L

H 2 , 2 L

H 2 , 3 L

H 1 , 1 L

H 1 , 2 L

H 1 , 3 LFigure 2: Example for a 3 × 3 square.4



These points are labelled (p, q), where p is the horizontal distan
e from the upper right-hand 
orner ofthe square and q is the verti
al distan
e from this 
orner. (Both of these distan
es are positive though weare moving left and down.) Note that 1 ≤ p, q ≤ n.At any given point (p, q), how many re
tangles have their bottom left 
orner at that position? There are
pq su
h re
tangles. One 
an see this by noting that there are p options for the height of su
h a re
tangleand q options for its width, and these 
hoi
es are independent. Sin
e every re
tangle has a lower left vertexat only one pla
e, the 
hoi
es for p and q are mutually ex
lusive. Thus, there are

n∑

p=1

n∑

q=1

pqre
tangles in this n × n square. Again, this sum needs a little bit of simplifying.
n∑

p=1





n∑

q=1

pq



 =

n∑

p=1

(p · 1 + p · 2 + · · · + p · n)

=

n∑

p=1

p · (1 + 2 + · · · + n)

= 1 · (1 + 2 + · · · + n) + 2 · (1 + 2 + · · · + n) + · · · + n · (1 + 2 + · · · + n)

= (1 + 2 + · · · + n) · (1 + 2 + · · · + n)

= (1 + 2 + · · · + n)2

=

(

n∑

k=0

k

)2We have 
ounted the same number of re
tangles in two di�erent ways. In doing so we have arrived atour equality:
n∑

k=1

k3 =

(

n∑

k=1

k

)2

.

¤

5 Visual ExampleFor the visual example, we return to a 3×3 square divided into units.
There are 13 + 23 + 33 = (1 + 2 + 3)2 = 36 re
tangles in this square.

5.1 First Counting MethodFor the �rst 
ounting method, we will 
ount the re
tangles based on the summation
n∑

i=1



(n − i + 1)2 +

n∑

j=i+1

2 (n − i + 1)(n − j + 1)



 .The proof 
ounts re
tangles by their smallest sides. For example, 
onsider the 
ase when the smallest sideis 1 (i = 1). 5



There are (3 − 1 + 1)2 = 9 squares of dimension 1×1.There are 2 · (3 − 1 + 1)(3 − 2 + 1) = 2(3)(2) = 12 re
tangles with dimensions of 1 and 2.Lastly, there are 2 · (3 − 1 + 1)(3 − 3 + 1) = 2(3)(1) = 6 re
tangles with dimensions of 1 and 3.Thus, we have a total of 9 + (12 + 6) = 27 re
tangles with a smaller side of 1.
5.2 Second Counting MethodAs in the proof, the se
ond 
ounting method uses the summation

n∑

p=1

n∑

q=1

pq.The re
tangles are highlighted a

ording to the position of their bottom left verti
es. The visualizationbegins by displaying ea
h of the re
tangles that has a lower left 
orner at point (p, q) = (1, 1). We movedown to point (1, 2), and so on. Consider the point (3, 1) as an example. There are 3 · 1 = 3 re
tangles witha lower left 
orner at this point: one 3×1 re
tangle, one 2×1 re
tangle, and one 1×1 re
tangle.
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