
Common DefinitionsThe majority of these de�nitions 
ome from Dis
rete Mathemati
s with Proof by Dr. Eri
 Gossett[Gos03℄.
1 Combinations∗

Definition 1 CombinationsCombinations involve 
hoosing subsets from a given set. The order of the elements that 
ompose thesubsets is unimportant and repetition is not allowed.
Counting Formula 1 CombinationsThe number of ways to 
hoose a subset of r obje
ts from a set of n obje
ts without repetition, with
0 ≤ r ≤ n, is denoted by C(n, r), and is read \ n 
hoose r." The number of 
ombinations is given by

C(n, r) =
n!

r! · (n − r)!
.If 0 ≤ n < r, then C(n, r) = 0.A frequently seen notation for the 
ombination C(n, r) is (

n

r

), whi
h is the notation used in the BinomialTheorem. Known as a binomial 
oeÆ
ient, (

n

r

) is a standard notation in 
ombinatorial identities. Thoughthe C(n, r) notation is used in some of the visualizations, the 
ommon (

n

r

) notation is used in the expositions.* The reader should note that in most referen
es to 
ounting, permutations are de�ned along with 
ombinations. However, Ihave yet to �nd a 
ombinatorial proof that uses a permutation, so that de�nition has been omitted.
2 General Counting Principles

2.1 Independent Tasks

Definition 2 IndependentThe tasks in a 
olle
tion or sequen
e of tasks are said to be independent if the out
ome of any task is notin
uen
ed by the out
omes of the other tasks in the 
olle
tion or sequen
e.
General Counting Principle 1 Rule of Produ
tIf a proje
t 
an be de
omposed into a 
olle
tion of independent tasks with n1 ways to a

omplish the �rst,
n2 ways to a

omplish the se
ond, . . . and nk ways to a

omplish the kth task, then the proje
t 
an be
ompleted in n1n2 · · ·nk ways.Often the word \and" is a 
lue that the tasks are independent. If one task \and" another are 
ompleted,they should generally be multiplied. 1



2.2 Mutually Exclusive Tasks

Definition 3 Mutually Ex
lusiveThe tasks in a 
olle
tion aremutually ex
lusive if 
ompleting any one of the tasks ex
ludes the 
ompletionof the other tasks.
General Counting Principle 2 Rule of SumIf a proje
t 
an be de
omposed into a 
olle
tion of mutually ex
lusive tasks with n1 ways to a

omplishthe �rst, n2 ways to a

omplish the se
ond, . . . and nk ways to a

omplish the kth task, then the proje
t
an be 
ompleted in n1 + n2 + · · · + nk ways.Usually the word \or" is a 
lue that the tasks are mutually ex
lusive. If one task \or" another is to be
ompleted, they should be added.
3 Summation NotationSummation notation is not only frequently used in the �eld of 
ombinatori
s but in all �elds of mathemati
s.Familiarity with summation notation and its properties is often assumed. Those properties are given herealong with a few examples.
Definition 4 Summation Notation

n∑

i=k

ai = ak + ak+1 + ak+2 + · · · + an−1 + anWe say that this is the sum of the numbers ai where i goes from k to n, in
lusive. The variable i in this
ase is 
alled our index variable and 
an be 
hanged without altering the sum.Re
all that ea
h term in a summation is 
alled a summand. The summands in the de�nition are theterms ak, ak+1, ak+2, . . . , an−1, and an.A few examples are given to reinfor
e the de�nition.
Example 1

13∑

i=10

3i = 3 · 10 + 3 · 11 + 3 · 12 + 3 · 13 = 30 + 33 + 36 + 39 = 138ex
Example 2

5∑

m=0

(

5

m

)

=

(

5

0

)

+

(

5

1

)

+

(

5

2

)

+

(

5

3

)

+

(

5

4

)

+

(

5

5

)

= 1 + 5 + 10 + 10 + 5 + 1 = 32ex 2



Sometimes the summation may be in�nite. An example of a summation that goes to ∞ is as follows:
Example 3

∞∑

k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·You might re
all from 
al
ulus that this sum is known as the harmoni
 series.ex As expe
ted, properties of the real numbers 
an be applied to summation notation.

Properties:Let c be a 
onstant. Then1. ∑n

i=1 c = nc2. ∑n

i=k(ai + bi) =
∑n

i=k ai +
∑n

i=k bi3. ∑n

i=k(ai − bi) =
∑n

i=k ai −
∑n

i=k bi4. ∑n

i=k c · ai = c ·
∑n

i=k ai.Noti
e that Property 4 is akin to the distributive property. Re
onsider the sum given in Example 1.Using Property 4, we see that
13∑

i=10

3i = 3

13∑

i=10

i = 3(10 + 11 + 12 + 13) = 3(46) = 138.These properties are very useful in simplifying summations. Sometimes though, a bit more \manipu-lation" is required. One manipulation te
hnique that is similar to a substitution in algebra is known as aChange of variable. An example of this is as follows:
Example 4Suppose you have the sum

6∑

i=3

iand we would like to begin at 1 instead of 3. Let us 
hoose a new index variable: j. Noti
e that to start atthe number 1, j = i − 2 sin
e 1=3-2. The sum now looks like
4∑

j=1

(j + 2).In expanded form
4∑

j=1

j + 2 = (1 + 2) + (2 + 2) + (2 + 3) + (2 + 4) = 3 + 4 + 5 + 6 = 18,whi
h equals
6∑

i=3

i = 3 + 4 + 5 + 6 = 18.ex 3



4 Floor and Ceiling Functions

Definition 5 Floor Fun
tion, Ceiling Fun
tionFor all real numbers x,the 
oor fun
tion, denoted by ⌊x⌋, is the largest integer in the interval (x − 1, x]and the 
eiling fun
tion, denoted by ⌈x⌉, is the largest integer in the interval [x, x + 1).The 
oor fun
tion 
an be thought of as a trun
ation, while the 
eiling fun
tion always rounds up. A fewexamples are given to illustrate these de�nitions.1. ⌊2
3
⌋ = 0 and ⌈2

3
⌉ = 12. ⌊517.2334⌋ = 517 and ⌈517.2334⌉ = 5183. ⌊π⌋ = 3 and ⌈π⌉ = 44. ⌊−5.1⌋ = −6 and ⌈−5.1⌉ = −5
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